Escherichia coli O157 in Cull Dairy Cows on Farm and at Slaughter.

J Food Prot

2604 12th Court, SW, Suite B, Olympia, Washington 98502.

Published: November 1997

Cull dairy cattle both on the farm and at slaughter from herds in the states of Idaho, Oregon, and Washington were surveyed for Escherichia coli O157 by culturing fecal swab samples. A total of 205 cull cows from 19 dairy herds were sampled on the farm of origin; 7 (3.4%) tested positive for E. coli O157. A total of 103 cull cows from 15 dairy herds were sampled at slaughter; 4 (3.9%) were positive for E. coli O157. Eighty-nine cull cows were sampled both at the farm and at slaughter; 2 (2.2%) were positive in both locations, 3 (3.3%) only on the farm, and 2 (2.2%) only at the slaughter plant. Seven (7.9%) of the 89 cull cows tracked from farm to slaughter were positive in at least one location. This suggests a higher prevalence of E. coli O157 in cull dairy cattle than previously has been reported to occur in other ages and classes of cattle.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X-60.11.1386DOI Listing

Publication Analysis

Top Keywords

coli o157
20
farm slaughter
16
cull cows
16
cull dairy
12
escherichia coli
8
o157 cull
8
dairy cattle
8
cows dairy
8
dairy herds
8
herds sampled
8

Similar Publications

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Ruminant-dense environments increase risk of reported Shiga toxin-producing infections independently of ruminant contact.

Appl Environ Microbiol

January 2025

Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.

Cattle and other domestic ruminants are the primary reservoirs of O157 and non-O157 Shiga toxin-producing (STEC). Living in areas with high ruminant density has been associated with excess risk of infection, which could be due to both direct ruminant contact and residual environmental risk, but the role of each is unclear. We investigated whether there is any meaningful risk to individuals living in ruminant-dense areas if they do not have direct contact with ruminants.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Magnetic graphene-enhanced exonuclease III assisted amplification strategy driven carbon nanozyme for tri-mode detection of Escherichia coli O157:H7.

Food Chem

January 2025

School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:

Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction.

View Article and Find Full Text PDF

Improved Functionality, Quality, and Shelf Life of -Type Camel Sausage Fortified with Spirulina as a Natural Ingredient.

Foods

December 2024

Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain.

The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in -type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!