Cull dairy cattle both on the farm and at slaughter from herds in the states of Idaho, Oregon, and Washington were surveyed for Escherichia coli O157 by culturing fecal swab samples. A total of 205 cull cows from 19 dairy herds were sampled on the farm of origin; 7 (3.4%) tested positive for E. coli O157. A total of 103 cull cows from 15 dairy herds were sampled at slaughter; 4 (3.9%) were positive for E. coli O157. Eighty-nine cull cows were sampled both at the farm and at slaughter; 2 (2.2%) were positive in both locations, 3 (3.3%) only on the farm, and 2 (2.2%) only at the slaughter plant. Seven (7.9%) of the 89 cull cows tracked from farm to slaughter were positive in at least one location. This suggests a higher prevalence of E. coli O157 in cull dairy cattle than previously has been reported to occur in other ages and classes of cattle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028X-60.11.1386 | DOI Listing |
PLoS One
January 2025
Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, Davis, California, United States of America.
In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
Cattle and other domestic ruminants are the primary reservoirs of O157 and non-O157 Shiga toxin-producing (STEC). Living in areas with high ruminant density has been associated with excess risk of infection, which could be due to both direct ruminant contact and residual environmental risk, but the role of each is unclear. We investigated whether there is any meaningful risk to individuals living in ruminant-dense areas if they do not have direct contact with ruminants.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences Sylhet Agricultural University Sylhet Bangladesh.
The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:
Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction.
View Article and Find Full Text PDFFoods
December 2024
Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain.
The objective of the present work was to examine the effect of incorporating spirulina powder (SP) in -type sausages made exclusively with camel meat, as well as to evaluate its physicochemical, microbiological, and sensory quality attributes and its prebiotic potential. The final purpose was to offer an innovative meat product to increase camel meat consumption. Several innovative fresh sausage formulations were developed using SP (00, 100, 250, and 500 mg/kg) and stored under vacuum conditions with refrigeration at 1 ± 1 °C for 35 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!