Lateral flow paper-based biosensors merge as powerful tools in point-of-care diagnostics since they are cheap, portable, robust, selective, fast and easy to use. However, the sensitivity of this type of biosensors is not always as high as required, often not permitting a clear quantification. To improve the colorimetric response of standard lateral flow strips (LFs), we have applied a new enhancement strategy that increases the sensitivity of LFs based on the use of cellulose nanofibers (CNF). CNF penetrate inside the pores of LFs nitrocellulose paper, compacting the pore size only in the test line, particularly near the surface of the strip. This modification retains the bioreceptors (antibodies) close to the surface of the strips, and thus further increasing the density of selectively attached gold nanoparticles (AuNPs) in the top part of the membrane, in the test line area, only when the sample is positive. This effect boosts in average a 36.6% the sensitivity of the LFs. The optical measurements of the LFs were carried out with a mobile phone camera whose imaging resolution was improved by attaching microscopic lens on the camera objective. The characterization of CNF into paper and their effect was analyzed using atomic force microscope (AFM) and scanning electron microscope (SEM) imaging techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2019.111407 | DOI Listing |
Pathogens
January 2025
The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
The domestic dog () is a competent host for () infection but no ante mortem diagnostic tests have been fully validated for this species. The aim of this study was to compare the performance of ante mortem diagnostic tests across samples collected from dogs considered to be at a high or low risk of sub-clinical infection. We previously tested a total of 164 dogs at a high risk of infection and here test 42 dogs at a low risk of infection and 77 presumed uninfected dogs with a combination of cell-based and/or serological diagnostic assays previously described for use in non-canid species.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang-si 37673, Republic of Korea.
The emergence of numerous SARS-CoV-2 variants, characterized by mutations in the viral RNA genome and target proteins, has presented challenges for accurate COVID-19 diagnosis. To address this, we developed universal aptamer probes capable of binding to the spike proteins of SARS-CoV-2 variants, including highly mutated strains like Omicron. These aptamers were identified through protein-based SELEX using spike proteins from three key variants (D614G-substituted Wuhan-Hu-1, Delta, and Omicron) and virus-based SELEX, known as viro-SELEX.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai 201306, China.
The lateral line system in fish is crucial for detecting water flow, which facilitates various behaviors such as prey detection, predator avoidance, and rheotaxis. The cupula, a gelatinous structure overlaying the hair cells in neuromasts, plays a key role in transmitting mechanical stimuli to hair cells. However, the molecular composition of the cupula matrix remains poorly understood.
View Article and Find Full Text PDFRespir Med Res
January 2025
Department of Respiratory and Sleep Medicine, Angers University hospital, Angers, France; MitoVasc, Carme, SFR ICAT, CNRS 6015, Inserm 1083, University of Angers, Angers, France. Electronic address:
Introduction: Non-invasive ventilation (NIV) is the reference treatment for chronic respiratory failure (CRF) due to impairment of the ventilatory system. Home initiation is increasingly practiced. To better support this ambulatory shift, we aimed to assess the implementation constraints and short-term efficacy according to different aetiologies of CRF.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Bioengineering, George Mason University, Fairfax, Virginia.
Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.
Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!