PnSAG1, an E3 ubiquitin ligase of the Antarctic moss Pohlia nutans, enhanced sensitivity to salt stress and ABA.

Plant Physiol Biochem

National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, 266237, China. Electronic address:

Published: August 2019

Plant U-box (PUB) E3 ubiquitin ligases play crucial roles in the plant response to abiotic stress and the phytohormone abscisic acid (ABA) signaling, but little is known about them in bryophytes. Here, a representative U-box armadillo repeat (PUB-ARM) ubiquitin E3 ligase from Antarctic moss Pohlia nutans (PnSAG1), was explored for its role in abiotic stress response in Arabidopsis thaliana and Physcomitrella patens. The expression of PnSAG1 was rapidly induced by exogenous abscisic acid (ABA), salt, cold and drought stresses. PnSAG1 was localized to the cytoplasm and showed E3 ubiquitin ligase activity by in vitro ubiquitination assay. The PnSAG1-overexpressing Arabidopsis enhanced the sensitivity with respect to ABA and salt stress during seed germination and early root growth. Similarly, heterogeneous overexpression of PnSAG1 in P. patens was more sensitive to the salinity and ABA in their gametophyte growth. The analysis by RT-qPCR revealed that the expression of salt stress/ABA-related genes were downregulated in PnSAG1-overexpressing plants after salt treatment. Taken together, our results indicated that PnSAG1 plays a negative role in plant response to ABA and salt stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2019.06.002DOI Listing

Publication Analysis

Top Keywords

ubiquitin ligase
12
salt stress
12
aba salt
12
ligase antarctic
8
antarctic moss
8
moss pohlia
8
pohlia nutans
8
enhanced sensitivity
8
plant response
8
abiotic stress
8

Similar Publications

Stem cell pluripotency gene Sox2 stimulates expression of proneural basic-helix-loop-helix transcription factor Atoh1. Sox2 is necessary for the development of cochlear hair cells and binds to the Atoh1 3' enhancer to stimulate Atoh1 expression. We show here that Sox2 deletion in late embryogenesis results in the formation of extra hair cells, in contrast to the absence of hair cell development obtained after Sox2 knockout early in gestation.

View Article and Find Full Text PDF

Background: von Hippel-Lindau (VHL) hereditary cancer syndrome is caused by mutations in the VHL tumor suppressor gene and is characterized by a predisposition to form various types of tumors, including renal cell carcinomas, hemangioblastomas, and pheochromocytomas. The protein products of the VHL gene, pVHL, are part of an ubiquitin ligase complex that tags hypoxia inducible factor alpha (HIF-α) for proteosomal degradation. pVHL has also been reported to bind to atypical protein kinase C (aPKC).

View Article and Find Full Text PDF

Membrane-associated RING-CH8 (MARCH8) is a member of the recently discovered MARCH family of ubiquitin ligases. MARCH8 has been shown to participate in immune responses. However, the role of MARCH8 in prognosis and immunology in human cancers remains largely unknown.

View Article and Find Full Text PDF

The histone demethylase KDM5C enhances the sensitivity of acute myeloid leukemia cells to lenalidomide by stabilizing cereblon.

Cell Mol Biol Lett

January 2025

Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.

Background: The protein cereblon (CRBN) mediates the antileukemia effect of lenalidomide (Len). Len binds to CRBN, recruits IKZF1/IKZF3, and promotes their ubiquitination and degradation, through which Len exhibits its antileukemia and antimyeloma activity. Therefore, the protein level of CRBN might affect the antiproliferative effect of Len.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!