A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Systemic Regulation of Bone Marrow Stromal Cytokines After Severe Trauma. | LitMetric

Systemic Regulation of Bone Marrow Stromal Cytokines After Severe Trauma.

J Surg Res

Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida Health, Gainesville, Florida. Electronic address:

Published: November 2019

Background: Traumatic injury generates a prolonged hypercatecholamine state that is associated with reduced growth of bone marrow erythroid progenitors mediated by the bone marrow stroma. The bone marrow stroma is made up of many cells including fibroblasts, which respond to inflammatory stimuli and alter the cytokine profile. We hypothesized that trauma plasma would increase bone marrow stromal fibroblast expression of interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF), erythropoietin (EPO), stem cell factor (SCF), and activation of nuclear factor kappa-light-chain-enhancer of activated B cells and correlate with injury severity and anemia.

Materials And Methods: Plasma from 15 trauma patients was cultured with bone marrow fibroblast cells and compared with that from healthy volunteers. At 6, 24, and 48 h, the expression of IL-6, G-CSF, EPO, SCF, and the activation of nuclear factor kappa-light-chain-enhancer of activated B cells were measured using quantitative polymerase chain reaction. The influence of trauma plasma on cytokine expression was further stratified by injury severity score (ISS).

Results: The average hemoglobin significantly decreased from admission to discharge (10.7 ± 2.5 to 9.2 ± 1.1 g/dL, P < 0.04). The discharge hemoglobin significantly decreased by 14% from the admission hemoglobin. After 48 h, trauma plasma significantly increased IL-6, G-CSF, and EPO bone marrow fibroblast expression when compared with normal plasma. When stratified by ISS, IL-6, G-CSF, and EPO, bone marrow fibroblast expression was highest in the trauma plasma ISS 27-41 group and was significantly elevated compared with normal plasma. When SCF expression was stratified by ISS, there was a significant increase in expression in ISS 27-41. Higher ISS was also associated with a larger decrease in hemoglobin despite no difference in total blood transfusions.

Conclusions: Severe trauma can systemically increase IL-6, G-CSF, and EPO expression in bone marrow stroma. Increased hematopoietic cytokine expression after traumatic injury correlated with a hypercatecholamine state, anemia, and injury severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6773485PMC
http://dx.doi.org/10.1016/j.jss.2019.05.033DOI Listing

Publication Analysis

Top Keywords

bone marrow
24
marrow stromal
8
marrow stroma
8
trauma plasma
8
scf activation
8
activation nuclear
8
nuclear factor
8
factor kappa-light-chain-enhancer
8
kappa-light-chain-enhancer activated
8
activated cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!