During early post-implantation human embryogenesis, the epiblast (EPI) within the blastocyst polarizes to generate a cyst with a central lumen. Cells at the uterine pole of the EPI cyst then undergo differentiation to form the amniotic ectoderm (AM), a tissue essential for further embryonic development. While the causes of early pregnancy failure are complex, improper lumenogenesis or amniogenesis of the EPI represent possible contributing factors. Here we report a novel AM microtissue array platform that allows quantitative phenotyping of lumenogenesis and amniogenesis of the EPI and demonstrate its potential application for embryonic toxicity profiling. Specifically, a human pluripotent stem cell (hPSC)-based amniogenic differentiation protocol was developed using a two-step micropatterning technique to generate a regular AM microtissue array with defined tissue sizes. A computer-assisted analysis pipeline was developed to automatically process imaging data and quantify morphological and biological features of AM microtissues. Analysis of the effects of cell density, cyst size and culture conditions revealed a clear connection between cyst size and amniogenesis of hPSC. Using this platform, we demonstrated that pharmacological inhibition of ROCK signaling, an essential mechanotransductive pathway, suppressed lumenogenesis but did not perturb amniogenic differentiation of hPSC, suggesting uncoupled regulatory mechanisms for AM morphogenesis vs. cytodifferentiation. The AM microtissue array was further applied to screen a panel of clinically relevant drugs, which successfully detected their differential teratogenecity. This work provides a technological platform for toxicological screening of clinically relevant drugs for their effects on lumenogenesis and amniogenesis during early human peri-implantation development, processes that have been previously inaccessible to study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658735 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2019.119244 | DOI Listing |
Nature
October 2023
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs).
View Article and Find Full Text PDFBiomaterials
September 2019
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. Electronic address:
During early post-implantation human embryogenesis, the epiblast (EPI) within the blastocyst polarizes to generate a cyst with a central lumen. Cells at the uterine pole of the EPI cyst then undergo differentiation to form the amniotic ectoderm (AM), a tissue essential for further embryonic development. While the causes of early pregnancy failure are complex, improper lumenogenesis or amniogenesis of the EPI represent possible contributing factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!