Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The immune system of many invertebrates, including insects, has been shown to comprise memory, or specific immune priming. However, knowledge of the molecular mechanisms especially the candidate immune-related genes mediated the specificity of the immune priming are still very scarce and fragmentary. We therefore used two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) as the priming agents and employed Illumina/Solexa platform to investigate the transcriptional changes of the haemocytes of Bombyx mori larvae after priming.
Results: In total, 23.0 Gbp of sequence data and 153,331,564 reads were generated, representing 10,496 genes. Approximately 89% of the genes or sequenced reads could be aligned to the silkworm reference genome. The differentially expressed genes (DEGs) of PBS-vs-TT01 (up-regulated expression of TT01 relative to PBS), PBS-vs-H06 (up-regulated expression of H06 relative to PBS) and TT01-vs-H06 (up-regulated expression of H06 relative to TT01) were 707, 159 and 461 respectively. In addition, expression patterns of 25 selected DEGs derived from quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with their transcript abundance changes obtained by transcriptomic analyses. The DEGs are mainly related to pattern recognition receptors (PRRs), antimicrobial peptides (AMPs), signaling molecular, effector molecules, phagosome and spliceosome, indicating that they have participated in the regulation of the specific immune priming in the B. mori larvae.
Conclusions: The transcriptome profiling data sets from this study will provide valuable resources to better understand the molecular and biological mechanisms regulating the specificity of invertebrates' immune priming. All these will shed light on controlling insect pests or preventing epidemic of infectious diseases in economic invertebrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meegid.2019.103921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!