Breast cancer is the most dominating malignancy in females worldwide. Treatment with conventional chemotherapeutics is associated with severe adverse effects. Thus need of new compounds, with better therapeutic potential and lesser side effects still exist. In this context the present study is planned to investigate therapeutic potential of anti-inflammatory compound N-(2- hydroxyphenyl) acetamide (NA-2) against breast cancer cells (MCF-7). The compound was selected on the basis of its reported anti-inflammatory, anti-arthritic and anti-glioblastoma activities in our previous studies. MTT, Annexin-V-FITC and wound healing assays were used to analyze the effect of compound on growth inhibition, apoptosis and metastasis. While flow cytometry, RT-PCR and immunocytochemistry techniques were used to assess the effect of NA-2 on cell cycle arrest, and expression of apoptotic markers (Bax and Bcl-2) at both mRNA and protein level respectively. Data analysis revealed that NA-2 significantly inhibits growth of MCF-7 cells after 48 h treatment (IC = 1.65 mM). NA-2 also delayed the wound healing process, arrested cell cycle at G0/G1 phase and induced apoptosis by enhancing Bax/Bcl-2 ratio. We concluded that NA-2 possesses strong anticancer activity against MCF-7 cells, which is mediated through different mechanisms, making it a useful molecule for the development of new antitumor drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2019.06.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!