Lactobacillus sp. improved microbiota and metabolite profiles of aging rats.

Pharmacol Res

School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. Electronic address:

Published: August 2019

Aging is closely associated with altered gut function and composition, in which elderly were reported with reduced gut microbiota diversity and increased incidence of age-related diseases. Probiotics have been shown to exert beneficial health-promoting effects through modulation of intestinal microflora biodiversity, thus the effects of probiotics administration on D-galactose (D-gal) senescence-induced rat were evaluated based on the changes in gut microbiota and metabolomic profiles. Upon senescence induction, the ratio of Firmicutes/ Bacteroidetes was significantly lowered, while treatment with Lactobacillus helveticus OFS 1515 and L. fermentum DR9 increased the ratio at the phylum level (P < 0.05). Study on the genus level showed that L. paracasei OFS 0291 and L. helveticus OFS 1515 administration reduced Bacteroides, which are prominently opportunistic pathogens while L. fermentum DR9 treated rats promoted the proliferation of Lactobacillus compared to the aged rats (P < 0.05). Probiotics treatment did not alter fecal short-chain fatty acid (SCFA) profile, but an increase in acetate was observed in the D-gal rats. The analysis of fecal water-soluble metabolites showed that D-gal induced senescence caused great impact on amino acids metabolism such as urocanic acid, citrulline, cystamine and 5-oxoproline, which could serve as potential aging biomarkers. Treatment with probiotics ameliorated these metabolites in a strain-specific manner, whereby L. fermentum DR9 promoted antioxidative effect through upregulation of oxoproline, whereas both L. paracasei OFS 0291 and L. helveticus OFS 1515 restored the levels of reducing sugars, arabinose and ribose similar to the young rats. D-gal induced senescence did cause significant immunological alteration in the colon of aged rats however, all probiotic strains demonstrated immunomodulatory properties as L. paracasei OFS 0291, L. helveticus OFS 1515 and L. fermentum DR9 alleviated proinflammatory cytokines TNF-α, IFN-γ and IL-1β as well as IL-4 compared to the aged control (P < 0.05). Our study highlights the potential of probiotics as an anti-aging therapy through healthy gut modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2019.104312DOI Listing

Publication Analysis

Top Keywords

gut microbiota
8
lactobacillus improved
4
improved microbiota
4
microbiota metabolite
4
metabolite profiles
4
profiles aging
4
aging rats
4
rats aging
4
aging closely
4
closely associated
4

Similar Publications

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice.

Commun Biol

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.

High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.

View Article and Find Full Text PDF

The gut microbiota alterations interact with the pathogenesis and progression of chronic kidney disease (CKD). Probiotics have received wide attention as a potential management in CKD. We investigated the effects of Lactobacillus paracasei N1115 (LP N1115) on intestinal microbiota and related short-chain fatty acids (SCFAs) in end stage kidney disease patients on peritoneal dialysis (PD) in a single-center, prospective, randomized, double-blind, placebo-controlled study.

View Article and Find Full Text PDF

Profiling and comprehensive analysis of microbiome and ARGs of nurses and nursing workers in China: a cross-sectional study.

Sci Rep

December 2024

Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

Hospital-acquired infection (HAI) and antimicrobial resistance (AMR) represent major challenges in healthcare system. Despite numerous studies have assessed environmental and patient samples, very few studies have explored the microbiome and resistome profiles of medical staff including nursing workers. This cross-sectional study was performed in a tertiary hospital in China and involved 25 nurses (NSs), 25 nursing workers (NWs), and 55 non-medical control (NC).

View Article and Find Full Text PDF

Short-chain fatty acids play a key role in antibody response to SARS-CoV-2 infection in people living with HIV.

Sci Rep

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.

High SARS-CoV-2-specific antibody levels can protect against SARS-CoV-2 reinfection. The gut microbiome can affect a host's immune response. However, its role in the antibody response to SARS-CoV-2 in people living with HIV (PLWH) remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!