The physiological consequences of exposing marine organisms to predicted future ocean scenarios, i.e. simultaneous increase in temperature and pCO, have only recently begun to be investigated. Adult American lobster (Homarus americanus) were exposed to either current (16 °C, 47 Pa pCO, pH 8.10) or predicted year 2300 (20 °C, 948 Pa pCO, pH 7.10) ocean parameters for 14-16 days prior to assessing physiological changes in their hemolymph parameters as well as whole animal ammonia excretion and resting metabolic rate. Acclimation of lobster simultaneously to elevated pCO and temperature induced a prolonged respiratory acidosis that was only partially compensated for via accumulation of extracellular HCO and ammonia. Furthermore, acclimated animals possessed significantly higher ammonia excretion and oxygen consumption rates suggesting that future ocean scenarios may increase basal energetic demands on H. americanus. Enzyme activity related to protein metabolism (glutamine dehydrogenase, alanine aminotransferase, and aspartate aminotransferase) in hepatopancreas and muscle tissue were unaltered in future ocean scenario exposed animals; however, muscular citrate synthase activity was reduced suggesting that, while protein catabolism may be unchanged, the net energetic output of muscle may be compromised in future scenarios. Overall, H. americanus acclimated to ocean conditions predicted for the year 2300 appear to be incapable of fully compensating against climate change-related acid-base challenges and experience an increase in metabolic waste excretion and oxygen consumption. Combining our study with past literature on H. americanus suggests that the whole lifecycle from larvae to adult stages is at risk of severe growth, survival and reproductive consequences due to climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2019.06.005DOI Listing

Publication Analysis

Top Keywords

future ocean
12
climate change
8
american lobster
8
lobster homarus
8
homarus americanus
8
temperature pco
8
ocean scenarios
8
predicted year
8
year 2300
8
ammonia excretion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!