A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta. | LitMetric

Background: RNA interference (RNAi) has been evaluated in several insect pests as a novel strategy to be included in integrated pest management. Lepidopterans are recognized to be recalcitrant to gene silencing by RNAi. As such, double-stranded RNA (dsRNA) delivery needs to be adjusted to assure its stability until it reaches the target gene transcript for silencing. Gene silencing by RNAi offers the potential to be used in the control of Tuta absoluta (Meyrick), one of the main insect pests of tomato (Solanum lycopersicum) worldwide. Here, we tested the delivery of dsRNA expressed in Escherichia coli HT115(DE3) and supplied to larvae in an artificial diet by screening target genes for silencing. We tested six target genes: juvenile hormone inducible protein (JHP); juvenile hormone epoxide hydrolase protein (JHEH); ecdysteroid 25-hydroxylase (PHM); chitin synthase A (CHI); carboxylesterase (COE); and arginine kinase (AK).

Results: Based on larval mortality, the duration of the larval stage in days, pupal weight, and the accumulation of the target gene transcript, we demonstrated the efficacy of bacterial dsRNA delivery for the functional effects on larval development. Providing dsRNA targeted to JHP, CHI, COE and AK by bacteria led to a significant decrease in transcript accumulation and an increase in larval mortality.

Conclusion: Bacteria expressing dsRNA targeting essential T. absoluta genes supplied in artificial diet are efficient to screen RNAi target-genes. The oral delivery of dsRNA by bacteria is a novel potential alternative for the control of T. absoluta based on RNAi. © 2019 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.5513DOI Listing

Publication Analysis

Top Keywords

gene silencing
12
silencing rnai
12
delivery dsrna
12
oral delivery
8
dsrna bacteria
8
tuta absoluta
8
insect pests
8
dsrna delivery
8
target gene
8
gene transcript
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!