Pseudomonas bacteria are widespread and are found in soil and water, as well as pathogens of both plants and animals. The ability of Pseudomonas to colonize many different environments is facilitated by the multiple signaling systems these bacteria contain that allow Pseudomonas to adapt to changing circumstances by generating specific responses. Among others, signaling through extracytoplasmic function σ (σ ) factors is extensively present in Pseudomonas. σ factors trigger expression of functions required under particular conditions in response to specific signals. This manuscript reviews the phylogeny and biological roles of σ factors in Pseudomonas, and highlights the diversity of σ -signaling pathways of this genus in terms of function and activation. We show that Pseudomonas σ factors belong to 16 different phylogenetic groups. Most of them are included within the iron starvation group and are mainly involved in iron acquisition. The second most abundant group is formed by RpoE-like σ factors, which regulate the responses to cell envelope stress. Other groups controlling solvent tolerance, biofilm formation and the response to oxidative stress, among other functions, are present in lower frequency. The role of σ factors in the virulence of Pseudomonas pathogenic species is described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.14331 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!