Elemental analysis of rare earth elements is essential in a variety of fields including environmental monitoring and nuclear safeguards; however, current techniques are often labor intensive, time consuming, and/or costly to perform. The difficulty arises in preparing samples, which requires separating the chemically and physically similar lanthanides. However, by transitioning these separations to the microscale, the speed, cost, and simplicity of sample preparation can be drastically improved. Here, all fourteen non-radioactive lanthanides (lanthanum through lutetium minus promethium) are separated by ITP for the first time in a serpentine fused-silica microchannel (70 µm wide × 70 µm tall × 33 cm long) in <10 min at voltages ≤8 kV with limits of detection on the order of picomoles. This time includes the 2 min electrokinetic injection time at 2 kV to load sample into the microchannel. The final leading electrolyte consisted of 10 mM ammonium acetate, 7 mM α-hydroxyisobutyric acid, 1% polyvinylpyrrolidone, and the final terminating electrolyte consisted of 10 mM acetic acid, 7 mM α-hydroxyisobutyric acid, and 1% polyvinylpyrrolidone. Electrophoretic electrodes are embedded in the microchip reservoirs so that voltages can be quickly applied and switched during operation. The limits of detection are quantified using a commercial capacitively coupled contactless conductivity detector (C D) to calculate ITP zone lengths in combination with ITP theory. Optimization of experimental procedures and reproducibility based on statistical analysis of subsequent experimental results are addressed. Percent error values in band length and conductivity are ≤8.1 and 0.37%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.201900027DOI Listing

Publication Analysis

Top Keywords

design optimization
4
optimization fused-silica
4
fused-silica microfluidic
4
microfluidic device
4
device separation
4
separation trivalent
4
trivalent lanthanides
4
lanthanides isotachophoresis
4
isotachophoresis elemental
4
elemental analysis
4

Similar Publications

A model of care redesign within rheumatology: A mixed methods approach integrating nurse practitioners and physician assistants.

J Am Assoc Nurse Pract

January 2025

Division of Cardiology, Department of Medicine, Duke Health Integrated Practice, Duke University Health System, Durham, North Carolina.

Background: Increasing patient demand and clinician burnout in rheumatology practices have highlighted the need for more efficient models of care (MOC). Interprofessional collaboration is essential for improving patient outcomes and clinician satisfaction.

Local Problem: Our current MOC lacks standardization and formal integration of Nurse Practitioners (NPs) and Physician Assistants (PAs), resulting in reduced clinician satisfaction and limited patient access.

View Article and Find Full Text PDF

Introduction: Metabolic and bariatric surgery (MBS) is increasingly used for obesity and metabolic disease, with safety profiles showing it is among the safest major operations. The last 20 + years have noted significantly improved safety that has been accompanied by decreasing length of stay and select populations electing for outpatient surgery, leading to continued decreases in cost. Regardless, readmissions and complications still occur, requiring inpatient postoperative care (IP-POC).

View Article and Find Full Text PDF

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Quantum chemical studies of carbon-based graphene-like nanostructures: from benzene to coronene.

J Mol Model

January 2025

Department of Chemistry, Federal Institute of Education, Science and Technology of Espírito Santo, Av. Min. Salgado Filho, Vila Velha, 29106-010, Espírito Santo, Brazil.

Context: This study presents quantum chemical analysis of 14 distinct carbon-based nanostructures (CBN), ranging from simple molecules, like benzene, to more complex structures, such as coronene, which serves as an exemplary graphene-like model. The investigation focuses on elucidating the relationships between molecular orbital (MO) energies, the energy band gaps, electron occupation numbers (eON), electronic conduction, and the compound topologies, seeking to find the one that approaches most of a graphene-like structure for in silico studies. Through detailed examination of molecular properties including chemical hardness and chemical potential, we demonstrate that the electronic exchange between orbitals is directly influenced by the structural topology of the carbon-based nanostructures, as the electron occupation numbers and the molecular orbital energies.

View Article and Find Full Text PDF

A review of state-of-the-art resolution improvement techniques in SPECT imaging.

EJNMMI Phys

January 2025

Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.

Single photon emission computed tomography (SPECT), a technique capable of capturing functional and molecular information, has been widely adopted in theranostics applications across various fields, including cardiology, neurology, and oncology. The spatial resolution of SPECT imaging is relatively poor, which poses a significant limitation, especially the visualization of small lesions. The main factors affecting the limited spatial resolution of SPECT include projection sampling techniques, hardware and software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!