Background And Aims: CD14+ mononuclear phagocytes [MNPs] and T cells infiltrate colon in ulcerative colitis [UC]. Here we investigated how CD14+ MNPs and the cytokines they produce shape the colonic effector T cell profile.
Methods: Colonic or mesenteric lymph node [mLNs] CD4+ T cells isolated from UC or Crohn's disease [CD] patients were stimulated with cytokines or autologous CD14+ MNPs. Cytokine expression was assessed by intracytoplasmic staining and multiplex ELISA. Unsupervised phenotypic multicolour analysis of colonic CD14+ MNPs was performed using the FlowSOM algorithm.
Results: Among CD14+CD64+HLA-DR+SIRPα + MNPs, only the pro-inflammatory cytokine-producing CD163- subpopulation accumulated in inflamed UC colon and promoted mucosal IL-1β-dependent Th17, Th17/Th1, Th17/Th22 but not Th1 responses. Unsupervised phenotypic analysis of CD14+CD64+ MNPs segregated CD163- monocyte-like cells and CD163+ macrophages. Unexpectedly, IL-12, IL-1β and CD163-, but not CD163+, cells induced IL-8 expression in colonic CD4+ T cells, which co-expressed IFN-γ and/or IL-17 in UC and not CD. The CD163- monocyte-like cells increased the frequency of IL-8+IL-17+/-IFN-γ +/- T cells through IL-1β and IL-12. Finally, colonic IL-8+ T cells co-expressing GM-CSF, TNF-α and IL-6 were detected ex vivo and, promoted by IL-12 in the mucosa and mLNs in UC only.
Conclusions: Our findings established a link between monocyte-like CD163- MNPs, IL-12, IL-1β and the detection of colonic memory IL-8-producing CD4+ T cells, which might all contribute to the pathogenesis of UC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930004 | PMC |
http://dx.doi.org/10.1093/ecco-jcc/jjz115 | DOI Listing |
Sci Rep
December 2024
State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.
View Article and Find Full Text PDFSci Rep
December 2024
Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.
Double negative T (DNT) cells are a unique subset of CD3 + TCRαβ + T lymphocytes that lack CD4, CD8, or NK1.1 expression and constitute 3-5% of the total T cell population in C57BL/6 mice. They have increasingly gained recognition for their novel roles in the immune system, especially under autoimmune conditions.
View Article and Find Full Text PDFPediatr Rheumatol Online J
December 2024
Section of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Canada.
Background: Primary small vessel CNS vasculitis (sv-cPACNS) is a challenging inflammatory brain disease in children. Brain biopsy is mandatory to confirm the diagnosis. This study aims to develop and validate a histological scoring tool for diagnosing small vessel CNS vasculitis.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!