Background: A low proportion of individuals repeatedly exposed to the hepatitis C virus (HCV) remain uninfected. This condition could have a genetic basis but it is not known whether or not it is mainly driven by a high-penetrance common allele.
Objective: To explore whether low susceptibility to HCV infection is mainly driven by a high-penetrance common allele.
Methods: In this genome-wide association study (GWAS), a total of 804 HCV-seropositive individuals and 27 high-risk HCV-seronegative (HRSN) subjects were included. Plink and Magma software were used to carry out single nucleotide polymorphism (SNP)-based and gene-based association analyses respectively.
Results: No SNP nor any gene was associated with low susceptibility to HCV infection after multiple testing correction. However, SNPs previously associated with this trait and allocated within the LDLR gene, rs5925 and rs688, were also associated with this condition in our study under a dominant model (24 out of 27 [88.9%] rs5925-C carriers in the HRSN group vs 560 of 804 [69.6%] rs5925-C carriers in the HCV-seropositive group, P = 0.031, odds ratio [OR] = 3.48; 95% confidence interval [CI] = 1.04-11.58; and 24 out of 27 [88.9%] rs688-T carriers in the HRSN group vs 556 of 804 [69.1%] rs688-T carriers in the HCV-seropositive group, P = 0.028, OR = 3.57, 95% CI = 1.65-11.96).
Conclusions: Low susceptibility to HCV infection does not seem to be mainly driven by a high-penetrant common allele. By contrast, it seems a multifactorial trait where genes such as LDLR could be involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/liv.14177 | DOI Listing |
Pest Manag Sci
January 2025
Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
Background: Bed bugs are blood-feeders that rapidly proliferate into large indoor infestations. Their bites can cause allergies, secondary infections and psychological stress, among other problems. Although several tactics for their management have been used, bed bugs continue to spread worldwide wherever humans reside.
View Article and Find Full Text PDFNat Commun
January 2025
NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, China.
The discovery of high-temperature superconductivity in LaNiO under pressure has drawn great attention. However, consensus has not been reached on its pairing symmetry in theory. By combining density-functional-theory (DFT), maximally-localized-Wannier-function, and linearized gap equation with random-phase-approximation, we find that the pairing symmetry of LaNiO is d, if its DFT band structure is accurately reproduced by a downfolded bilayer two-orbital model.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Environment, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
Microplastic pollution, a major global environmental issue, is gaining heightened attention worldwide. Marginal seas are particularly susceptible to microplastic contamination, yet data on microplastics in marine sediments remain scarce, especially in the Beibu Gulf. This study presents a large-scale investigation of microplastics in the surface sediments of the Beibu Gulf to deciphering their distribution, sources and risk to marginal seas ecosystems.
View Article and Find Full Text PDFPoult Sci
January 2025
Centro de Calidad Avícola y Alimentación Animal de la Comunidad Valenciana (CECAV), 12539 Castellón, Spain; Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Instituto de Ciencias Biomédicas, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain. Electronic address:
Colibacillosis is a disease caused by avian pathogenic Escherichia coli (APEC) isolates which results in significant morbidity and mortality in poultry, as well as in economic loses. In order to identify APEC strains in a population of 898 E. coli isolates from poultry samples collected from different avian flocks located in the Valencian Region, Spain, we analysed the most significantly related to highly-pathogenic colibacillosis virulence-associated genes (VAGs) (hlyF, iroN, iss, iutA and ompT) by multiplex real-time polymerase chain reaction (RT-PCR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!