AI Article Synopsis

  • Cellular contractility plays a crucial role in various biological functions, from cell movement and division to maintaining tissue stability, and is crucial for the functioning of multi-cellular organisms.
  • Disruptions in contractility are linked to various diseases, making it a valuable target for new diagnostic techniques and therapeutic approaches, which require accurate measurement of contractile forces.
  • The study introduces a novel method using silicone elastomer-based traction force microscopy in a multi-well format to analyze the effects of TGF-β on contractility during the Epithelial to Mesenchymal Transition (EMT) in NMuMG cells, highlighting its relevance in understanding disease mechanisms.

Article Abstract

Cellular contractility is essential in diverse aspects of biology, driving processes that range from motility and division, to tissue contraction and mechanical stability, and represents a core element of multi-cellular animal life. In adherent cells, acto-myosin contraction is seen in traction forces that cells exert on their substrate. Dysregulation of cellular contractility appears in a myriad of pathologies, making contractility a promising target in diverse diagnostic approaches using biophysics as a metric. Moreover, novel therapeutic strategies can be based on correcting the apparent malfunction of cell contractility. These applications, however, require direct quantification of these forces. We have developed silicone elastomer-based traction force microscopy (TFM) in a parallelized multi-well format. Our use of a silicone rubber, specifically polydimethylsiloxane (PDMS), rather than the commonly employed hydrogel polyacrylamide (PAA) enables us to make robust and inert substrates with indefinite shelf-lives requiring no specialized storage conditions. Unlike pillar-PDMS based approaches that have a modulus in the GPa range, the PDMS used here is very compliant, ranging from approximately 0.4 kPa to 100 kPa. We create a high-throughput platform for TFM by partitioning these large monolithic substrates spatially into biochemically independent wells, creating a multi-well platform for traction force screening that is compatible with existing multi-well systems. In this manuscript, we use this multi-well traction force system to examine the Epithelial to Mesenchymal Transition (EMT); we induce EMT in NMuMG cells by exposing them to TGF-β, and to quantify the biophysical changes during EMT. We measure the contractility as a function of concentration and duration of TGF-β exposure. Our findings here demonstrate the utility of parallelized TFM in the context of disease biophysics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033630PMC
http://dx.doi.org/10.3791/59364DOI Listing

Publication Analysis

Top Keywords

traction force
16
force microscopy
8
cellular contractility
8
traction
5
contractility
5
high throughput
4
throughput traction
4
force
4
microscopy pdms
4
pdms reveals
4

Similar Publications

An Open-source Python Tool for Traction Force Microscopy on Micropatterned Substrates.

Bio Protoc

January 2025

Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, Grenoble, France.

Cell-generated forces play a critical role in driving and regulating complex biological processes, such as cell migration and division and cell and tissue morphogenesis in development and disease. Traction force microscopy (TFM) is an established technique developed in the field of mechanobiology used to quantify cellular forces exerted on soft substrates and internal mechanical tissue stresses. TFM measures cell-generated traction forces in 2D or 3D environments with varying mechanical and biochemical properties.

View Article and Find Full Text PDF

The endocardial anchoring technique is a novel modification of total anomalous pulmonary venous return repair that involves creation of an L-shaped flap of the pulmonary venous confluence, subsequently anchoring it to the endocardium. A wide and smooth pathway can be expected from the theoretical advantages of this technique, namely, a smooth inner surface of the anchored flap and traction force to extend the orifice of the connection. An application of this technique for a rare variant of supracardiac total anomalous pulmonary venous return suggests its potential to be an alternative to the conventional repair, especially in patients with a curved pulmonary venous confluence.

View Article and Find Full Text PDF

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Background: The Latarjet and other bony augmentation procedures are commonly used to treat anterior shoulder instability in the setting of significant glenoid bone loss. Although several fixation strategies have been reported, the biomechanical strength of these techniques remains poorly understood.

Purpose: To perform a systematic review of the biomechanical strength of glenoid bony augmentation procedures for anterior shoulder instability.

View Article and Find Full Text PDF

Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!