Five new cyanido-bridged heterometallic coordination polymers have been obtained by reacting PPh4[RuIII(salpn)(CN)2]·H2O (1) and AsPh4[RuIII(valen)(CN)2]·8.5H2O (2) (H2salpn and H2valen being Schiff-base proligands resulting from the condensation reaction of salicylaldehyde with 1,3-propanediamine and, respectively, o-vanillin with 1,2-ethanediamine) with divalent transition metal perchlorate salts: ∞1[{RuIII(salpn)(CN)2}3{MII(DMF)3}2](ClO4)·4DMF (MII = Mn, 3; Co, 4) and ∞2[{RuIII(valen)(CN)2}4{MII(DMF)3}2{MII(DMF)4}](ClO4)2·4DMF (MII = Mn, 5; Co, 6; Ni, 7), respectively. The dicyanido species, trans-[Ru(salpn)(CN)2]- and trans-[Ru(valen)(CN)2]-, act as metalloligands with the 3d metal ions. Compounds 3 and 4 are isostructural one-dimensional (1D) coordination polymers with a ladder topology. Each MII ion is hexacoordinated by three cyanido groups arising from three {Ru(salpn)(CN)2} units and by the oxygen atoms from three DMF molecules, which are coordinated at meridional positions. Compounds 5-7 are also isostructural, their structures consisting of 2D networks with a herringbone topology. The magnetic susceptibility measurements of these 1D and 2D systems reveal the presence of dominating RuIII-MII antiferromagnetic (AF) interactions in compounds 3, 4, 5 and 6, while ferromagnetic RuIII-NiII interactions are observed in 7. All these compounds stay in their paramagnetic state down to 1.8 K except compound 4 which possesses a 3D ordered AF ground state.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt01593kDOI Listing

Publication Analysis

Top Keywords

coordination polymers
12
heterometallic 3d-4d
4
3d-4d coordination
4
polymers assembled
4
assembled trans-[rulcn]
4
trans-[rulcn] tectons
4
tectons cations
4
cations cyanido-bridged
4
cyanido-bridged heterometallic
4
heterometallic coordination
4

Similar Publications

This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.

View Article and Find Full Text PDF

This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.

View Article and Find Full Text PDF

To solve the energy crisis and environmental issues, it is essential to create effective and sustainable energy conversion and storage technologies. Traditional materials for energy conversion and storage however have several drawbacks, such as poor energy density and inadequate efficiency. The advantages of MOF-based materials, such as pristine MOFs, also known as porous coordination polymers, MOF composites, and their derivatives, over traditional materials, have been thoroughly investigated.

View Article and Find Full Text PDF

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils.

Molecules

January 2025

Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.

In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!