The deubiquitinase USP13 stabilizes the anti-inflammatory receptor IL-1R8/Sigirr to suppress lung inflammation.

EBioMedicine

Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. Electronic address:

Published: July 2019

Background: The Single immunoglobin interleukin-1 (IL-1)-related receptor (Sigirr), also known as IL-1R8, has been shown to exhibit broad anti-inflammatory effects against inflammatory diseases including acute lung injury, while molecular regulation of IL-1R8/Sigirr protein stability has not been reported. This study is designed to determine whether stabilization of IL-1R8/Sigirr by a deubiquitinating enzyme (DUB) is sufficient to suppress inflammatory responses and lessen lung inflammation.

Methods: A molecular signature of ubiquitination and degradation of IL-1R8/Sigirr was determined using a receptor ligation chase model. The anti-inflammatory effects on USP13 were investigated. USP13 knockout mice were evaluated for stabilization of IL-1R8/Sigirr and disease phenotype in an acute lung injury model.

Findings: IL-1R8/Sigirr degradation is mediated by the ubiquitin-proteasome system, through site-specific ubiquitination. This effect was antagonized by the DUB USP13. USP13 levels correlate directly with IL-1R8/Sigirr, and both proteins were reduced in cells and tissue from mice subjected to inflammatory injury by the TLR4 agonist lipopolysaccharide (LPS). Knockdown of USP13 in cells increased IL-1R8/Sigirr poly-ubiquitination and reduced its stability, which enhanced LPS-induced TLR4 signaling and cytokine release. Likewise, USP13-deficient mice were highly susceptible to LPS or Pseudomonas aeruginosa models of inflammatory lung injury. IL-1R8/Sigirr overexpression in cells or by pulmonary viral transduction attenuated the inflammatory phenotype conferred by the USP13 genotype.

Interpretation: Stabilization of IL-1R8/Sigirr by USP13 describes a novel anti-inflammatory pathway in diseases that could provide a new strategy to modulate immune activation. FUND: This study was supported by the US National Institutes of Health (R01HL131665, HL136294 to Y.Z., R01 GM115389 to J.Z.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642080PMC
http://dx.doi.org/10.1016/j.ebiom.2019.06.011DOI Listing

Publication Analysis

Top Keywords

lung injury
12
stabilization il-1r8/sigirr
12
il-1r8/sigirr
10
anti-inflammatory effects
8
acute lung
8
usp13
7
lung
5
inflammatory
5
deubiquitinase usp13
4
usp13 stabilizes
4

Similar Publications

Interstitial lung disease (ILD) consists of a group of immune-mediated disorders that can cause inflammation and progressive fibrosis of the lungs, representing an area of unmet medical need given the lack of disease-modifying therapies and toxicities associated with current treatment options. Tissue-specific splice variants (SVs) of human aminoacyl-tRNA synthetases (aaRSs) are catalytic nulls thought to confer regulatory functions. One example from human histidyl-tRNA synthetase (HARS), termed HARS because the splicing event resulted in a protein encompassing the WHEP-TRS domain of HARS (a structurally conserved domain found in multiple aaRSs), is enriched in human lung and up-regulated by inflammatory cytokines in lung and immune cells.

View Article and Find Full Text PDF

Anti-inflammatory effects of Esomeprazole in septic lung injury by mediating endoplasmic reticulum stress.

J Bioenerg Biomembr

March 2025

Emergency Medicine Department, The people's hospital of Feicheng, No. 108 Xincheng Road, Feicheng City, Shandong Province, China.

Acute lung injury characterized by overactive pulmonary inflammation is a common and serious complication of sepsis. Esomeprazole (ESO), a potent proton pump inhibitor (PPI), has been demonstrated as a promising anti-inflammatory agent in treating sepsis at high concentrations, the efficacy of which in sepsis-induced lung injury has not been explored. This research aimed to investigate the role of ESO in septic lung injury and the potential mechanism.

View Article and Find Full Text PDF

Unlabelled: To explore whether prenatal conditions (i.e. chorioamnionitis, preeclampsia or small-for-gestational age (SGA)) affect the very preterm infant's response to docosahexaenoic acid (DHA) on bronchopulmonary dysplasia (BPD), according to mode of delivery, an independent factor shown to modulate this association.

View Article and Find Full Text PDF

No evidence for paradoxical effects of tocilizumab in rodents.

Naunyn Schmiedebergs Arch Pharmacol

March 2025

Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.

Interleukin-6 (IL-6) is a multifunctional cytokine with important functions in health and disease. In order to activate its target cells, IL-6 binds first to the IL-6 receptor (IL-6R), which in turn induces the recruitment and homodimerization of the signal-transducing β-receptor gp130 and the activation of intracellular signaling cascades, including the phosphoinositide 3-kinase (PI3K)-AKT cascade. IL-6 is involved in the pathogenesis of multiple inflammatory diseases, and tocilizumab, a monoclonal antibody that binds to the IL-6R and thus blocks the biological activities of IL-6, is in clinical use worldwide for the treatment of patients with inflammatory diseases, including rheumatoid arthritis.

View Article and Find Full Text PDF

Acrylamide (ACR) is a toxic compound formed during the heating of tobacco and starchy foods, contributing to increased reactive oxygen species (ROS) levels and significant health risks. This study evaluates the protective effects of gallic acid (GA), a natural polyphenol with potent antioxidant and anti-inflammatory properties, against ACR-induced lung injury. Fifty male rats were divided into five groups: Control, ACR, GA50 + ACR, GA100 + ACR, and GA100.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!