Responses of marine ectotherms to variable environmental temperature often entails maintanence of cellular homeostasis and physiological function through temperature compensation and physiological changes. We investigated the physiological response to thermal stress by examining proteomic changes in the marine kelp forest gastropod and emerging fisheries species Kellet's whelk (Kelletia kelletii) across a naturally-existing thermal gradient that ranges from a warmer-water site inside the species' native range and extends to the northern, cold-water edge of the range. We hypothesized that abundance of cellular stress response and energy metabolism proteins would increase with decreasing temperature in support of cold-compensation. Our exploratory proteomic analysis of whelk gill tissue (N = 6 whelks) from each of the four California Channel Island sites revealed protein abundance changes related to the cytoskeleton, energy metabolism/oxidative stress, and cell signaling. The changes did not correlate consistently with temperature. Nonetheless, whelks from the coldest island site showed increased abundance of energy metabolism and oxidative stress proteins, possibly suggesting oxidative damage of lipid membranes that is ameliorated by antioxidants and may aid in their cold stress response. Similarly, our exploratory analysis revealed abundances of cell signaling proteins that were higher at the coldest site compared to the warmest site, possibly indicating an importance for cell signaling regulation in relatively cooler environments. This study provides protein targets for future studies related to thermal effects in marine animals and may contribute to understanding the physiological response of marine organisms to future ocean conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2019.06.002DOI Listing

Publication Analysis

Top Keywords

cell signaling
12
proteomic changes
8
physiological response
8
stress response
8
energy metabolism
8
temperature
5
marine
5
stress
5
changes natural
4
natural temperature
4

Similar Publications

Cisplatin, a platinum-based chemotherapeutic agent, can be used to treat cervical cancer (CC), but cisplatin resistance is increased during the cisplatin treatment. Long non-coding RNA PGM5-AS1 reportedly participates in CC tumorigenesis; however, its role in CC patients with cisplatin resistance has not been revealed. The present aimed to examine the role of PGM5-AS1 in modulating cisplatin resistance in CC.

View Article and Find Full Text PDF

Wnt signaling is a critical pathway implicated in cancer development, with Frizzled proteins, particularly FZD10, playing key roles in tumorigenesis and recurrence. This study focuses on the potential of repurposed FDA-approved drugs targeting FZD10 as a therapeutic strategy for nasopharyngeal carcinoma (NPC). The tertiary structure of human FZD10 was constructed using homology modeling, validated by Ramachandran plot and ProQ analysis.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!