Equine asthma syndrome is an allergic, inflammatory airway disease that usually affects older horses. Respiratory acidosis is an acid-base imbalance caused by alveolar hypoventilation. The acid-base balance may be assessed using the Henderson-Hasselbalch equation as well as the Stewart model. The authors hypothesized that systemic respiratory acidosis changes the ionic concentrations affecting water dissociation. The study group included 16 Warmblood, mixed breed horses of both sexes with a history of severe equine asthma, and 10 healthy horses were used as controls. Arterial and venous blood were collected from all the horses. The pH, pO, and pCO and HCO were assessed in the arterial blood. Na, K, Cl, albumin, and P (P) were assessed in the venous blood. The obtained results were used to calculate the anion gap (AG), modified AG, actual strong ion difference (SID), weak non-volatile acids, and effective strong ion difference (SID) values for all the horses. A systemic, compensatory respiratory acidosis was diagnosed in the study group. The concentration of Na in the blood serum in the study group was significantly higher, whereas the concentration of Cl was significantly lower than the values in the control group. The SID and SID values calculated in the horses from the study group were significantly higher than those in the control group. Significantly higher SID and SID values confirm the presence of ionic changes that affect water dissociation in the course of respiratory acidosis in horses. The SID and SID values may be useful in the diagnosis and treatment of respiratory acidosis in horses, which warrant further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jevs.2019.05.006DOI Listing

Publication Analysis

Top Keywords

respiratory acidosis
24
sid values
20
sid sid
16
study group
16
acidosis horses
12
group higher
12
sid
9
horses
9
course respiratory
8
severe equine
8

Similar Publications

Congenital diaphragmatic hernia (CDH) presents significant challenges in neonatal management, particularly in the context of anesthesia. This case report details the successful anesthetic management of a five-day-old neonate with left-sided CDH requiring thoracoscopic repair. A five-day-old neonate, delivered via emergency cesarean section due to breech presentation, presented with severe respiratory distress and was diagnosed with left-sided CDH.

View Article and Find Full Text PDF

Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal.

J Clin Med

December 2024

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.

Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.

View Article and Find Full Text PDF

With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.

View Article and Find Full Text PDF

Reforming early intervention for premature infants: insights into integrated nursing and medical care in Western China.

Front Pediatr

December 2024

Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: Premature births has imposed substantial burdens on medical resources. Consequently, a specialized team was established and a model focused on early intervention, namely the Delivery Room Intensive Care Unit (DICU) emphasizing "care, support, and treatment" was introduced and its impact on the morbidity and mortality outcomes of newborns was assessed. Additionally, we aimed to develop a nomogram model for predicting the risk of intraventricular hemorrhage (IVH) in preterm infants.

View Article and Find Full Text PDF

Cerebrovascular regulation is critically dependent upon the arterial partial pressure of carbon dioxide ( ), owing to its effect on cerebral blood flow, tissue , tissue proton concentration, cerebral metabolism and cognitive and neuronal function. In normal environments and in the absence of pathology, at least over acute time frames, hypercapnia is usually managed readily via the respiratory chemoreflex arcs and/or acid-base buffering capacity, such that there is minimal impact on cerebrovascular and neurological function. However, in non-normal environments, such as enclosed spaces, or with pathology, extended exposures to elevations in can be detrimental to cerebral health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!