Regardless of continuous research to develop effective chemotherapies and improve patient's prognosis, cancer still remains one of the most deadly diseases worldwide. The reduction in the pace of successfully developing an effective anti-cancer drug is due to the rapid emergence of drug resistance exhibited by tumor cells. One of the resistance mechanisms which is least considered and somewhat overlooked is chemoresistance via drug metabolizing enzymes (DMEs). Therefore, this review emphasizes on pharmacokinetic resistance specifically the DMEs associated chemoresistance, in which drug molecule is rapidly metabolized by DMEs resulting in diminished potential of anti-cancer drugs. The current review will be covering DMEs that are associated with chemoresistance such as ALDH1A1, GST-π, DPD, CYP1B1 and so forth. Although several strategies have been developed to solve this problem such as prodrug designing, analog designing, DMEs inhibitors designing and development of specific pharmaceutical formulations but the inhibition of DMEs is still not considered significantly. Considering the significance of DMEs in chemoresistance, this review shed light on the mechanism of DMEs associated resistance at molecular level, their reported inhibitors that can be used as an adjuvant therapy and strategies (like prodrug designing, analog designing etc.) used so far to combat this problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03602532.2019.1632886 | DOI Listing |
Front Vet Sci
October 2024
College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.
Meat and its derivatives serve as crucial sources of protein, vitamins, minerals, and other essential nutrients for humans. Pork stands as China's primary animal-derived food product consumed widely across diverse dietary structures; evaluating intramuscular fat content becomes pivotal in assessing its quality standards. Nonetheless, the intricate molecular mechanisms governing intramuscular fat deposition remain elusive.
View Article and Find Full Text PDFBr J Clin Pharmacol
December 2024
College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
Aims: Drug exposure and response is determined by pharmacokinetic (PK) and pharmacodynamic (PD) profiles. Interindividual differences in abundance of drug metabolizing enzymes (DMEs) and drug target proteins underpin PK and PD variability and impact treatment efficacy and tolerability. Extracellular vesicles (EVs) carry protein cargo inherited from originating cells and may be useful for defining differences in key proteins related to hepatic drug metabolism and the treatment of metabolic-associated fatty liver disease (MAFLD).
View Article and Find Full Text PDFInt J Mol Sci
June 2024
Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China.
The placenta is a crucial determinant of fetal survival, growth, and development. Deficiency in placental development directly causes intrauterine growth retardation (IUGR). IUGR can lead to fetal growth restriction and an increase in the mortality rate.
View Article and Find Full Text PDFNat Prod Bioprospect
May 2024
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
N-Hydroxyapiosporamide (N-hydap), a marine product derived from a sponge-associated fungus, has shown promising inhibitory effects on small cell lung cancer (SCLC). However, there is limited understanding of its metabolic pathways and characteristics. This study explored the in vitro metabolic profiles of N-hydap in human recombinant cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs), as well as human/rat/mice microsomes, and also the pharmacokinetic properties by HPLC-MS/MS.
View Article and Find Full Text PDFBMC Infect Dis
May 2024
Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, 10# Zhenhai Road, Xiamen, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!