Contribution of Microaerophilic Iron(II)-Oxidizers to Iron(III) Mineral Formation.

Environ Sci Technol

Geomicrobiology, Center for Applied Geosciences , University of Tübingen, Tübingen 72074 , Germany.

Published: July 2019

Neutrophilic microbial aerobic oxidation of ferrous iron (Fe(II)) is restricted to pH-circumneutral environments characterized by low oxygen where microaerophilic Fe(II)-oxidizing microorganisms successfully compete with abiotic Fe(II) oxidation. However, accumulation of ferric (bio)minerals increases competition by stimulating abiotic surface-catalyzed heterogeneous Fe(II) oxidation. Here, we present an experimental approach that allows quantification of microbial and abiotic contribution to Fe(II) oxidation in the presence or initial absence of ferric (bio)minerals. We found that at 20 μM O and the initial absence of Fe(III) minerals, an iron(II)-oxidizing enrichment culture (99.6% similarity to spp.) contributed 40% to the overall Fe(II) oxidation within approximately 26 h and oxidized up to 3.6 × 10 mol Fe(II) cell h. Optimum O concentrations at which enzymatic Fe(II) oxidation can compete with abiotic Fe(II) oxidation ranged from 5 to 20 μM. Lower O levels limited biotic Fe(II) oxidation, while at higher O levels abiotic Fe(II) oxidation dominated. The presence of ferric (bio)minerals induced surface-catalytic heterogeneous abiotic Fe(II) oxidation and reduced the microbial contribution to Fe(II) oxidation from 40% to 10% at 10 μM O. The obtained results will help to better assess the impact of microaerophilic Fe(II) oxidation on the biogeochemical iron cycle in a variety of environmental natural and anthropogenic settings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b01531DOI Listing

Publication Analysis

Top Keywords

feii oxidation
44
abiotic feii
16
feii
13
oxidation
12
ferric biominerals
12
compete abiotic
8
contribution feii
8
initial absence
8
abiotic
6
contribution microaerophilic
4

Similar Publications

Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments.

View Article and Find Full Text PDF

Metal synergy can enhance the catalytic performance, and a prefabricated solid precursor can guide the ordered embedding, of secondary metal source ions for the rapid synthesis of bimetallic organic frameworks (MM'-MOFs) with a stoichiometric ratio of 1:1. In this paper, containing well-defined binding sites was synthesized by mechanical ball milling, which was used as a template for the induced introduction of Fe ions to successfully assemble the ordered bimetallic (where denotes template-directed synthesis of MOF-74). Its electrocatalytic performance is superior to that of the conventional one-step-synthesized (where denotes one-step synthesis of MOF-74), and the ratio of the two metal sources, Co and Fe, is close to 1:1.

View Article and Find Full Text PDF

Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances.

Bioresour Technol

January 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:

Article Synopsis
  • Iron is a key player in various microbial processes related to iron redox that impact global carbon and nitrogen cycles.
  • These processes include dissimilatory iron reduction, ammonium oxidation linked to iron reduction, and others that involve essential microorganisms and unique reaction mechanisms.
  • The review highlights potential applications in wastewater treatment, identifies research gaps, and suggests future directions for developing cost-effective and eco-friendly iron-based treatment methods.
View Article and Find Full Text PDF

Iron-Catalyzed Aerobic Carbonylation of Methane via Ligand-to-Metal Charge Transfer Excitation.

J Am Chem Soc

January 2025

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China.

The integration of ligand-to-metal charge transfer (LMCT) catalytic paradigms with radical intermediates has transformed the selective functionalization of inert C-H bonds, facilitating the use of nonprecious metal catalysts in demanding transformations. Notably, aerobic C-H carbonylation of methane to acetic acid remains formidable due to the rapid oxidation of methyl radicals, producing undesired C1 oxygenates. We present an iron terpyridine catalyst utilizing LMCT to achieve exceptional C2/C1 selectivity through synergistic photoexcitation, methyl radical generation, and carbonylation.

View Article and Find Full Text PDF

Removal of sulfamethoxazole by Fe(III)-activated peracetic acid combined with ascorbic acid.

Environ Technol

December 2024

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.

Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!