Cystinuria, is an autosomal recessive genetic disorder involving increasingly high levels of poorly soluble cysteine in urine leading to formation of stones. Developing a facile, low-cost, point-of-care and selective sensor for diagnosis of cysteine is imperative. Accordingly, for the detection of cysteine, the present study demonstrates an inexpensive colorimetric, paper-based vertical flow plasmonic micro-well device with a two-minute turn-around time. The method encompasses the use of microbially-synthesized silver nanoparticles (AgNPs) that change from light brown / yellow to dark brown upon binding with Sulphur present in cysteine. This technique allows for visual detection up to 1 × 10 mM cysteine and can be easily offered as a rapid diagnostic test even at setups with minimal resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10544-019-0399-4 | DOI Listing |
J Environ Manage
January 2025
Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece.
Vertical subsurface flow constructed wetlands (VSSF CWs) were employed to investigate the use of biochar that could be produced with local agricultural biomass through pyrolysis, recycled glass from local recycling companies and gel beads with decreased packing volume and shipping cost as substrate alternatives to sand. The materials were assessed in terms of granulometry, porosity, adsorption capacity and hydraulic conductivity and were used for the treatment of an upflow anaerobic sludge blanket (UASB) reactor, treating domestic wastewater, effluent. Granulometry was a major factor impacting TSS removal that ranged from 81% ± 10% to 97% ± 2%.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Civil Engineering, Jilin Jianzhu University, Changchun, 130119, China.
Accidental oil spills can have a serious impact on water bodies. While most current studies have focused on waves, few have examined water flows, which represent the most common hydrodynamic environment in urban inland waterways. In this study, 12 hydrodynamic conditions were constructed, and the oil vertical diffusion characteristics under hydrodynamic conditions were investigated by measuring oil concentration and oil droplet size distribution at different depths.
View Article and Find Full Text PDFPLoS One
January 2025
School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, Zhejiang, China.
Spillway chutes are critical in dam flood control, particularly in high dams where high water heads and large discharge in narrow canyons amplify the demand for safe discharging. For large unit discharges in spillways, aeration protection is essential to prevent cavitation erosion, but challenges arise from air duct choking in the traditional spillway and nonaerated regions in the stepped spillway. This paper introduces a novel spillway called the pre-aerated stilling basin spillway (PSBS).
View Article and Find Full Text PDFPLoS One
January 2025
North China University of Water Resources and Electric Power, Zhengzhou City, Henan Province, P.R. China.
This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.
View Article and Find Full Text PDFGround Water
January 2025
Département de Géologie et de génie géologique, Université Laval, Québec, Canada.
Deep monitoring wells with long screens crossing the transition zone between freshwater and saltwater are often used in coastal areas to characterize fresh groundwater resources and the depth of saline groundwater. However, past studies have demonstrated that long-screen wells can lead to biased observations of the transition zone, since vertical flow within the borehole can modify the shape and elevation of the transition zone in and around the borehole compared to undisturbed conditions without a well. Here, field observations and variable-density numerical flow simulations are used to evaluate, under natural flow conditions, how the installation of long-screen wells can provide time-varying biased observations of the freshwater-saltwater transition zone, and how various aquifer and well parameters affect the magnitude of these biases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!