Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: A cross-sectional study.

Water Res

Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Electronic address:

Published: September 2019

Wastewater treatment plants (WWTPs), linking human fecal residues and the environment, are considered as hotspots for the spread of antimicrobial resistance (AMR). In order to evaluate the role of WWTPs and underlying operational parameters for the removal of AMR, the presence and removal efficiency of a selected set of 6 antimicrobial resistance genes (ARGs) and 2 mobile genetic elements (MGEs) was evaluated by means of qPCR in influent and effluent samples from 62 Dutch WWTPs. The role of possible factors impacting the concentrations of ARGs and MGEs in the influent and their removal was identified through statistical analysis. ARGs and the class I integron-integrase gene (intI1) were, on average, removed to a similar extent (1.76 log reduction) or better (+0.30-1.90 logs) than the total bacteria (measured as 16S rRNA gene). In contrast, broad-host-range plasmids (IncP-1) had a significantly increased (p < 0.001) relative abundance after treatment. The presence of healthcare institutions in the area served did only slightly increase the concentrations of ARGs or MGEs in influent. From the extended panel of operational parameters, rainfall, increasing the hydraulic load of the plant, most significantly (p < 0.05) affected the treatment efficiency by decreasing it on average -0.38 logs per time the flow exceeded the average daily flow. Our results suggest that overall, WWTP treatments do not favor the proliferation of the assessed resistance genes but might increase the relative abundance of broad-host-range plasmids of the IncP-1 type.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2019.05.100DOI Listing

Publication Analysis

Top Keywords

presence removal
8
resistance genes
8
antimicrobial resistance
8
determinants presence
4
removal
4
removal antibiotic
4
antibiotic resistance
4
genes wwtp
4
wwtp treatment
4
treatment cross-sectional
4

Similar Publications

A cell-free gene expression system for prototyping and gene expression analysis.

Appl Environ Microbiol

December 2024

Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.

is an obligate anaerobic, Gram-positive bacterium that produces toxins. Despite technological progress, conducting gene expression analysis of under different conditions continues to be labor-intensive. Therefore, there is a demand for simplified tools to investigate the transcriptional and translational regulation of .

View Article and Find Full Text PDF

Unlabelled: Ubiquitous in nature, biofilms provide stability in a fluctuating environment and provide protection from stressors. Biofilms formed in industrial processes are exceedingly problematic and costly. While biofilms of sulfate-reducing bacteria in the environment are often beneficial because of their capacity to remove toxic metals from water, in industrial pipelines, these biofilms cause a major economic impact due to their involvement in metal and concrete corrosion.

View Article and Find Full Text PDF

Nd:YAG Laser Application for the Treatment of Retained Lens Fragment in the Anterior Chamber Following Cataract Surgery.

Turk J Ophthalmol

December 2024

University of Health Sciences Türkiye, Ulucanlar Eye Training and Research Hospital, Clinic of Ophthalmology, Ankara, Türkiye.

Cataract surgery is the most frequently performed surgery worldwide. Although it is an effective surgical treatment option for improving patients' visual acuity, various complications can occur postoperatively. One such complication is the presence of retained lens material in the anterior chamber, which can lead to intraocular inflammation, increased intraocular pressure, corneal edema, and endothelial cell loss.

View Article and Find Full Text PDF

Simple synthesis of graphene oxide-supported and phosphorylated chitosan gel bead to uptake uranium from wastewater.

Int J Biol Macromol

December 2024

State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.

With the development of the nuclear industry, the direct discharge of uranium-containing wastewater has become increasingly harmful to the environment. A novel graphene oxide-supported and phosphoric-crosslinked chitosan gel bead (C-PGCB) with excellent uranium uptake capability was successfully fabricated to treat uranium-containing wastewater. The experimental results showed that the introduction of PO and CO bonds through phosphoric acid crosslinking could greatly improve the capturing ability of chitosan-based materials, which could reach 97.

View Article and Find Full Text PDF

The photocatalytic efficiency of TiO has been opposed by the fast recombination speed of photogenerated carriers. Here, g-CN -modified sulfate-built-in TiO quantum dots (ST-QDs) were successfully created using a simple ultrasonication-thermal procedure. g-CN-enrapped ST QDs with a 10 nm size were revealed by the characterization results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!