Design, synthesis and biological evaluation of novel 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole triazole derivatives as potent TRPV1 antagonists.

Eur J Med Chem

State Key Laboratory of Natural Medicines, Center of Drug Discovery, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu, 210009, China. Electronic address:

Published: September 2019

Reported herein is the design, synthesis, and pharmacologic evaluation of a class of TRPV1 antagonists constructed on 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole as A-region and triazole as B-region. The SAR analysis indicated that 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole analogues displayed excellent antagonism of hTRPV1 activation by capsaicin and showed better potency compared to the corresponding dihydroindole analogues. Optimization of this design led to the eventual identification of 2-((1-(2-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (6g), a potent TRPV1 antagonist. In vitro, using cells expressing recombinant human TRPV1 channels, 6g displayed potent antagonism activated by capsaicin (IC = 0.075 μM) and only partially blocked acid activation of TRPV1. In vivo, 6g exhibited good efficacy in capsaicin-induced and heat-induced pain models and had almost no hyperthermia side-effect. Furthermore, pharmacokinetic studies revealed that compound 6g had a superior oral exposure after oral administration in rats. To understand its binding interactions with the receptor, the docking study of 6g was performed in rTRPV1 model and showed an excellent fit to the binding site. On the basis of its superior profiles, 6g could be considered as the lead candidate for the further development of antinociceptive drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2019.06.007DOI Listing

Publication Analysis

Top Keywords

design synthesis
8
potent trpv1
8
trpv1 antagonists
8
trpv1
5
synthesis biological
4
biological evaluation
4
evaluation novel
4
novel 2349-tetrahydro-1h-pyrido[34-b]indole
4
2349-tetrahydro-1h-pyrido[34-b]indole triazole
4
triazole derivatives
4

Similar Publications

Importance: Ultraprocessed foods (UPF), characterized as shelf-stable but nutritionally imbalanced foods, pose a public health crisis worldwide. In adults, UPF consumption is associated with increased obesity risk, but findings among children are inconsistent.

Objectives: To examine the associations among UPF intake, anthropometric adiposity indicators, and obesity status in Canadian children.

View Article and Find Full Text PDF

Importance: Approximately one-third of patients with ERBB2 (formerly HER2 or HER2/neu)-positive (ERBB2+) metastatic breast cancer (MBC) develop brain metastasis. It is unclear whether patients with disease limited to the central nervous system (CNS) have different outcomes and causes of death compared with those with concomitant extracranial metastasis.

Objective: To assess overall survival (OS) and CNS-related mortality among patients with ERBB2+ breast cancer and a diagnosis of CNS disease by disease distribution (CNS only vs CNS plus extracranial metastasis).

View Article and Find Full Text PDF

Objectives: Sepsis is a life-threatening medical emergency, with a profound healthcare burden globally. Its pathophysiology is complex, heterogeneous and temporally dynamic, making diagnosis challenging. Medical management is predicated on early diagnosis and timely intervention.

View Article and Find Full Text PDF

Stress Relaxation and Creep Response of Glassy Hydrogels with Dense Physical Associations.

ACS Appl Mater Interfaces

January 2025

Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

Various glassy hydrogels are developed by forming dense physical associations within the matrices, which exhibit forced elastic deformation and possess high stiffness, strength, and toughness. Here, the viscoplastic behaviors of the glassy hydrogel of poly(methacrylamide--methacrylic acid) are investigated by stress relaxation and creep measurements. We found that the characteristic time of stress relaxation of the glassy gel is much smaller than that of amorphous polymers.

View Article and Find Full Text PDF

Exopolysaccharides (EPS) produced by lactic acid bacteria with immunomodulatory potential are promising natural food additives. This study employs small-scale, 250 mL bioreactors combined with a central composite design to optimise two important bioprocess parameters, namely temperature and airflow, to achieve high yields of biomass and EPS from Lacticaseibacillus rhamnosus LRH30 (L. rhamnosus LRH30).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!