Objectives: This study compared the ability of automated myocardial perfusion imaging analysis to predict major adverse cardiac events (MACE) to that of visual analysis.
Background: Quantitative analysis has not been compared with clinical visual analysis in prognostic studies.
Methods: A total of 19,495 patients from the multicenter REFINE SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) study (64 ± 12 years of age, 56% males) undergoing stress Tc-99m-labeled single-photon emission computed tomography (SPECT) myocardial perfusion imaging were followed for 4.5 ± 1.7 years for MACE. Perfusion abnormalities were assessed visually and categorized as normal, probably normal, equivocal, or abnormal. Stress total perfusion deficit (TPD), quantified automatically, was categorized as TPD = 0%, TPD >0% to <1%, ≤1% to <3%, ≤3% to <5%, ≤5% to ≤10%, or TPD >10%. MACE consisted of death, nonfatal myocardial infarction, unstable angina, or late revascularization (>90 days). Kaplan-Meier and Cox proportional hazards analyses were performed to test the performance of visual and quantitative assessments in predicting MACE.
Results: During follow-up examinations, 2,760 (14.2%) MACE occurred. MACE rates increased with worsening of visual assessments, that is, the rate for normal MACE was 2.0%, 3.2% for probably normal, 4.2% for equivocal, and 7.4% for abnormal (all p < 0.001). MACE rates increased with increasing stress TPD from 1.3% for the TPD category of 0% to 7.8% for the TPD category of >10% (p < 0.0001). The adjusted hazard ratio (HR) for MACE increased even in equivocal assessment (HR: 1.56; 95% confidence interval [CI]: 1.37 to 1.78) and in the TPD category of ≤3% to <5% (HR: 1.74; 95% CI: 1.41 to 2.14; all p < 0.001). The rate of MACE in patients visually assessed as normal still increased from 1.3% (TPD = 0%) to 3.4% (TPD ≥5%) (p < 0.0001).
Conclusions: Quantitative analysis allows precise granular risk stratification in comparison to visual reading, even for cases with normal clinical reading.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899217 | PMC |
http://dx.doi.org/10.1016/j.jcmg.2019.02.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!