Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The possibility of laser cooling of bismuth hydride (BiH) molecules has been investigated based on high-level ab initio calculations by considering the core-valence and the spin-orbit coupling (SOC) effects. The potential energy curves of the 12 Λ-S states as well as the 25 Ω states that split from them via SOC are obtained by multireference configuration interaction plus the Davidson correction. The properties of b-X transition are investigated. Based on our calculations, we show that the transition between Ω states b0-X0 of BiH is a possible candidate for laser cooling, with consideration of the intermediate Ω state X1. An optical cycling scheme is proposed by utilizing four lasers at wavelengths around 471 and 601 nm with 5400 cycles for photon absorption/emission and a sub-microkelvin temperature. Our study should shed some light on searching for possible molecular candidates for laser cooling with the existence of an intermediate electronic state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5094367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!