Purpose: To characterize the microvascular effects of a brief period of hyperoxia, in patients with septic shock and in healthy volunteers.
Materials And Methods: In 20 patients with septic shock, we assessed systemic hemodynamics, sublingual microcirculation by SDF-videomicroscopy, and skin perfusion by capillary refill time (CRT), central-peripheral temperature (ΔT°), and perfusion index. Measurements were performed at baseline and after 5 min of inspired oxygen fraction of 1.00. Additionally, we studied 8 healthy volunteers, in whom hyperoxia was prolonged to 30 min.
Results: In septic patients, hyperoxia increased mean arterial pressure and systemic vascular resistance, but cardiac output remained unchanged. The only significant change in sublingual microcirculation was a decreased heterogeneity flow index (1.03 [1.01-1.07] vs 1.01 [0.34-1.05], P = .002). Perfused vascular density (13.1 [12.0-15.0] vs 14.0 [12.2-14.8] mm/mm, P = .21) and the other sublingual microvascular variables were unmodified. CRT and ΔT° did not change but perfusion index slightly decreased. In healthy volunteers, sublingual microcirculation and skin perfusion were stable.
Conclusions: Short-term hyperoxia induced systemic cardiovascular changes but was not associated with noticeable derangement in sublingual microcirculation and skin perfusion. Nevertheless, longer exposures to hyperoxia might have produced different results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcrc.2019.05.021 | DOI Listing |
World J Surg
December 2024
Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Background: Glycocalyx degradation is implicated in endothelial damage and microcirculatory dysfunction in sepsis, whereas the effectiveness of plasma syndecan-1 levels and sublingual microcirculatory parameters in evaluating sepsis's prognosis has not yet been determined. This study aims to track their dynamic changes and investigate the prognostic utility of these indexes in sepsis.
Methods: In this prospective study conducted at the First Affiliated Hospital of Sun Yat-sen University, blood samples were collected from adult surgical septic patients within 2 days after intensive care unit admission measuring plasma syndecan-1 concentrations.
Shock
December 2024
Division of Anesthesiology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University Hospitals of Geneva, Geneva, Switzerland.
Crit Care
December 2024
Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
Background: Loss of hemodynamic coherence is a phenomenon in critically ill patients. Due to inflammatory events and endothelial remodeling, macro- and microhemodynamics are decoupled from each other, resulting in microcirculatory disturbances and end organ ischemia despite adequate vital parameters. So far, quantification of perfusion of vessels with < 100 μm diameter on the intensive care unit (ICU) was regularly performed with incident darkfield (IDF) microscopy.
View Article and Find Full Text PDFEur Heart J Acute Cardiovasc Care
December 2024
Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, Duesseldorf D-40225, Germany.
Cardiogenic shock is a life-threatening condition characterized by inadequate cardiac output, leading to end-organ hypoperfusion and associated mortality rates ranging between 40 and 50%. The critical role of microcirculatory impairments in the progression of organ failure during shock has been highlighted in several studies. Traditional therapies have often focused on stabilizing macrocirculation, neglecting microcirculatory dysfunction, which can result in persistent tissue hypoxia and poor outcomes.
View Article and Find Full Text PDFRes Vet Sci
October 2023
Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires dans le Sepsis, VetAgro Sup, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France; Université de Lyon, VetAgro Sup, Unité de Physiologie, Pharmacodynamie et Thérapeutique, 1 avenue Bourgelat, F-69280 Marcy l'Etoile, France. Electronic address:
Microcirculation is frequently assessed using videomicroscopy in the sublingual mucosa. However, limited research has been conducted on the existence of blood flow autoregulation in this region. We conducted a study in an experimental porcine model of pharmacologically induced hypotension to evaluate the relationship between mean arterial pressure (MAP) and the microvascular flow index (MFI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!