Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Semiconductor photocatalysis has long been considered as a promising approach for remediation of polluted water. However, the high recombination rate of electrons and holes, as well as a low reaction rate, have impeded its large-scale applications. Therefore, it is of great importance to develop appropriate photocatalysts for promoting its practical application. In this study, a novel TiO/SiO/carbon electrospun nanofiber mat (TSC NFM) with flexibility and porous hierarchy has been successfully designed and fabricated by a facile method of electrospinning and carbonization. Characterization results show that the TSC NFM consists of closely-packed and well-distributed anatase (TiO) nanocrystals, amorphous SiO nanoparticles, and carbon with interconnected meso- and macro-pores. The photocatalytic performance of the TSC NFM was evaluated by degrading rhodamine B and 4-nitrophenol in batch systems. The results show that TSC NFM exhibits a higher photocatalytic activity than TiO/SiO nanofiber mat, which does not contain carbon. The enhanced performance of the TSC NFM can be attributed to the improved adsorption capacity toward the organic pollutants due to the presence of carbon and to the enhanced interfacial charge separation between TiO nanoparticles and carbon. Besides, the as-prepared TSC NFM displays good stability and reusability. Notably, the flexible TSC NFM can be used in a continuous-flow reactor to efficiently treat wastewater. Our work provides new insights into the fabrication of carbon-based inorganic nanofiber mats, which have great potential in water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2019.06.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!