Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent studies have shown a critical role of the gastrointestinal microbiome in brain and behavior via the complex gut-microbiome-brain axis. However, the influence of the oral microbiome in neurological processes is much less studied, especially in response to the stimuli, such as smoking, within the oral microenvironment. Additionally, given the complex structural and functional networks in brain, our knowledge about the relationship between microbiome and brain function through specific brain circuits is still very limited. In this pilot study, we leveraged next generation sequencing for microbiome and functional neuroimaging technique to enable the delineation of microbiome-brain network links as well as their relationship to cigarette smoking. Thirty smokers and 30 age- and sex-matched nonsmokers were recruited for 16S sequencing of their oral microbial community. Among them, 56 subjects were scanned by resting-state functional magnetic resonance imaging to derive brain functional networks. Statistical analyses were performed to demonstrate the influence of smoking on the oral microbial composition, functional network connectivity, and the associations between microbial shifts and functional network connectivity alternations. Compared to nonsmokers, we found a significant decrease of beta diversity (P = 6 × 10) in smokers and identified several classes (Betaproteobacteria, Spirochaetia, Synergistia, and Mollicutes) with significant alterations in microbial abundance. Pathway analysis on the predicted KEGG pathways shows that the microbiota with altered abundance are mainly involved in pathways related to cell processes, DNA repair, immune system, and neurotransmitters signaling. One brain functional network connectivity component was identified to have a significant difference between smokers and nonsmokers (P = 0.032), mainly including connectivity between brain default network and other task-positive networks. This brain functional component was also significantly associated with smoking related microbiota, suggesting a correlated cross-individual pattern between smoking-induced oral microbiome dysbiosis and brain functional connectivity alternation, possibly involving immunological and neurotransmitter signaling pathways. This work is the first attempt to link oral microbiome and brain functional networks, and provides support for future work in characterizing the role of oral microbiome in mediating smoking effects on brain activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849507 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2019.06.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!