The recent intentional use of nerve agents and pesticides in Europe and Afghanistan highlights the need for an effective countermeasure against organophosphates (OP) toxins. The most developed pretreatment candidate to date is plasma (native) human butyrylcholinesterase (HuBChE), which is limited in availability and because of its 1:1 stoichiometry with OPs, a large dose will present challenges when delivered parenterally both in terms of pharmacokinetics and manageability in the field. A tetrameric recombinant (r) form of human BChE produced in CHO-K1 cells with similar structure, in vivo stability and antidotal efficacy as the native form, has been developed to deliver rHuBChE as an aerosol (aer) to form a pulmonary bioshield capable of neutralizing inhaled OPs in situ and prevent AChE inhibition in the blood and in the brain; the latter associated with the symptoms of OP toxicity. Previous proof-of-concept macaque studies demonstrated that delivery of 9 mg/kg using a microsprayer inserted down the trachea, resulted in protection against an inhaled dose of 15ug/kg of aer-paraoxon (aer-Px) given 72 h later. In the present studies, pulmonary delivery of rHuBChE in macaques was achieved using Aerogen vibrating mesh nebulizers, similar to that used for human self-administration. The promising findings indicate that despite the poor lung deposition observed in macaques using nebulizers (13-20%), protective levels of RBC-AChE were still present in the blood even when exposure aer-Px (55 μg/kg) was delayed for five days. This long term retention of 5 mg/kg rHuBChE deposited in the lung bodes well for the use of an aer-rHuBChE pretreatment in humans where a user-friendly customized nebulizer with increased lung deposition up to 50% will provide even longer protection at a lower dose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679726 | PMC |
http://dx.doi.org/10.1016/j.cbi.2019.06.025 | DOI Listing |
Pharmacol Res Perspect
February 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary, Ankara University, Ankara, Turkey.
In this study, the structure of a new boron compound obtained using 3-methoxy catechol and 4-methoxy phenyl boronic acid was characterized by H, C NMR, LC-MS-IT-TOF, UV-Vis and FTIR spectroscopy. The antioxidant activities of the newly synthesized compound were evaluated by DPPH free radical scavenging, ABTS quation radical scavenging and CUPRAC copper reducing capacity methods. Anticholinesterase activities were determined by acetylcholinesterase and butyrylcholinesterase enzyme inhibitor assays.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Institute of Legal Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
Background: Sudden infant death syndrome (SIDS) is the leading cause of death among infants aged between one month and one year. Altered enzyme activities or expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) have been observed in SIDS patients that might lead to disturbed autonomic function and, together with other risk factors, might trigger SIDS. To explore the contribution of AChE and BChE from a genomic viewpoint, we sought to investigate the association between SIDS and selected single nucleotide polymorphisms (SNPs) in the and genes.
View Article and Find Full Text PDFBrain Sci
November 2024
Department of Public Safety and Correctional Services, Baltimore, MD 21215, USA.
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain.
View Article and Find Full Text PDFBiomolecules
December 2024
Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
The article is devoted to the creation of enzymatic nanoreactors based on polystyrene-block-poly(acrylic acid) (PS-b-PAA) copolymers containing bioscavengers capable of neutralizing toxic esters both in the body and in the environment. Block copolymers of different amphiphilicity, hydrophilicity and molecular weights were synthesized and characterized using gel permeation chromatography, NMR and UV spectroscopy. Polymeric nanocontainers in the absence and presence of human butyrylcholinesterase were made by film hydration and characterized by dynamic light scattering and microscopy methods.
View Article and Find Full Text PDFSci Rep
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!