Redox self-sufficient biocatalyst system for conversion of 3,4-Dihydroxyphenyl-L-alanine into (R)- or (S)-3,4-Dihydroxyphenyllactic acid.

J Ind Microbiol Biotechnol

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.

Published: August 2019

We developed an efficient multi-enzyme cascade reaction to produce (R)- or (S)-3,4-Dihydroxyphenyllactic acid [(R)- or (S)-Danshensu, (R)- or (S)-DSS] from 3,4-Dihydroxyphenyl-L-alanine (L-DOPA) in Escherichia coli by introducing tyrosine aminotransferase (tyrB), glutamate dehydrogenase (cdgdh) and D-aromatic lactate dehydrogenase (csldhD) or L-aromatic lactate dehydrogenase (tcldhL). First, the genes in the pathway were overexpressed and fine-tuned for (R)- or (S)-DSS production. The resulting strain, E. coli TGL 2.1 and E. coli TGL 2.2, which overexpressed tyrB with the stronger T7 promoter and cdgdh, csldhD or tcldhL with the weaker Trc promoter, E. coli TGL 2.1 yielded 57% increase in (R)-DSS production: 59.8 ± 2.9 mM. Meanwhile, E. coli TGL 2.2 yielded 54% increase in (S)-DSS production: 52.2 ± 2.4 mM. The optimal concentration of L-glutamate was found to be 20 mM for production of (R)- or (S)-DSS. Finally, L-DOPA were transformed into (R)- or (S)-DSS with an excellent enantiopure form (enantiomeric excess > 99.99%) and productivity of 6.61 mM/h and 4.48 mM/h, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-019-02200-7DOI Listing

Publication Analysis

Top Keywords

coli tgl
16
s-34-dihydroxyphenyllactic acid
8
lactate dehydrogenase
8
s-dss production
8
tgl yielded
8
coli
5
redox self-sufficient
4
self-sufficient biocatalyst
4
biocatalyst system
4
system conversion
4

Similar Publications

Lanthanide-based resonance energy transfer biosensors for live-cell applications.

Methods Enzymol

June 2021

Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States. Electronic address:

Lanthanide-based, Förster resonance energy transfer (LRET) biosensors enable sensitive, time-gated luminescence (TGL) imaging or multiwell plate analysis of protein-protein interactions (PPIs) in living mammalian cells. LRET biosensors are polypeptides that consist of an alpha-helical linker sequence sandwiched between a lanthanide complex-binding domain and a fluorescent protein (FP) with two interacting domains residing at each terminus. Interaction between the terminal affinity domains brings the lanthanide complex and FP in close proximity such that lanthanide-to-FP, LRET-sensitized emission is increased.

View Article and Find Full Text PDF

Staphylococcal bacteriophages of the genus are candidates for therapeutic applications. One of their proteins, Tgl, is slightly similar to two staphylococcal virulence factors, secreted autolysins of lytic transglycosylase motifs IsaA and SceD. We show that Tgl is a lytic enzyme secreted by the bacterial transport system and localizes to cell peripheries like IsaA and SceD.

View Article and Find Full Text PDF

Redox self-sufficient biocatalyst system for conversion of 3,4-Dihydroxyphenyl-L-alanine into (R)- or (S)-3,4-Dihydroxyphenyllactic acid.

J Ind Microbiol Biotechnol

August 2019

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.

We developed an efficient multi-enzyme cascade reaction to produce (R)- or (S)-3,4-Dihydroxyphenyllactic acid [(R)- or (S)-Danshensu, (R)- or (S)-DSS] from 3,4-Dihydroxyphenyl-L-alanine (L-DOPA) in Escherichia coli by introducing tyrosine aminotransferase (tyrB), glutamate dehydrogenase (cdgdh) and D-aromatic lactate dehydrogenase (csldhD) or L-aromatic lactate dehydrogenase (tcldhL). First, the genes in the pathway were overexpressed and fine-tuned for (R)- or (S)-DSS production. The resulting strain, E.

View Article and Find Full Text PDF

N-terminal domain replacement changes an archaeal monoacylglycerol lipase into a triacylglycerol lipase.

Biotechnol Biofuels

May 2019

1DBT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India.

Background: Lipolytic enzymes of hyperthermophilic archaea generally prefer small carbon chain fatty acid esters (C-C) and are categorized as esterases. However, a few have shown activity with long-chain fatty acid esters, but none of them have been classified as a true lipase except a lipolytic enzyme AFL from . Thus, our main objective is to engineer an archaeal esterase into a true thermostable lipase for industrial applications.

View Article and Find Full Text PDF

Pseudomonas fluorescens SBW25 was tagged with a triple marker gene cassette containing gfp, encoding green fluorescent protein; luxAB, encoding luciferase; and telABkilA, encoding tellurite resistance, and the tagged strain was monitored in the first Swedish field release of a genetically modified microorganism (GMM). The cells were inoculated onto winter wheat seeds and the GMM cells (SBW25:tgl) were monitored in the field from September 2005 to May 2006 using plating, luminometry and microscopic analyses. Cell numbers were high on all sampling occasions and metabolically active cells were detected on all plant parts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!