Biophysical understanding of arterial hemodynamics plays an important role in proper medical diagnosis and investigation of cardiovascular disease pathogens. One of the major cardiovascular parameters is pulse wave velocity (PWV), which depends on the mechanical properties of the arterial wall. The PWV contains information on the condition of the cardiovascular system as well as its physiological age. In humans and most animals, blood flow through the blood vessels is affected by several internal and external forces. The most influencing external force on blood flow is gravity. In the upright position of the body, blood moves from heart to head, opposite to gravity, and from the heart to the legs, in direction of the gravitational force. To investigate how gravity affects PWV, we have developed a biophysical model of cardiovascular system that simulates blood flow in the upright position of the body. The paper presents the results of measurement of PWV in an elastic tube filled with fluids of different viscosities in the gravitational field.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-019-01376-1DOI Listing

Publication Analysis

Top Keywords

blood flow
12
pulse wave
8
wave velocity
8
cardiovascular system
8
upright position
8
position body
8
blood
5
biophysical modeling
4
modeling wave
4
wave propagation
4

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

We present a method for conjugating antigens to gold nanoparticles (GNPs) during their synthesis via gas plasma, eliminating the need for chemical linkers and significantly speeding up the process (taking only 15 min). This fast, linker-free method produces biocompatible and stable GNPs, with potential for immunotherapy applications, such as antigen and antibody conjugation and drug delivery. We demonstrate the conjugation of the antigen Nestin (NES), a tumor marker, to GNPs using two approaches.

View Article and Find Full Text PDF

Introduction: Veno-venous extracorporeal membrane oxygenation (V-V ECMO) is increasingly used in the treatment of severe respiratory failure. Despite a significant increase in the worldwide use of extracorporeal lung assist devices recirculation remains a common complication and is associated with a reduced effectiveness of ECMO support and increased hemolysis. In this observational study we aimed to investigate the impact of cannula configuration and extracorporeal flow on recirculation.

View Article and Find Full Text PDF

Introduction: Malnutrition correlates with neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD); however, the potential mechanism underlying this association remains unclear.

Methods: Baseline and longitudinal associations of nutritional status with NPSs were analyzed in 374 patients on the AD continuum and 61 healthy controls. Serum biomarkers, behavioral tests, cerebral neurotransmitters, and differentially gene expression were evaluated in standard and malnourished diet-fed transgenic APPswe/PSEN1dE9 (APP/PS1) mice.

View Article and Find Full Text PDF

Background: The Fontan procedure is a surgical intervention designed for patients with single ventricle physiology, wherein the systemic venous return is redirected into the pulmonary circulation, thereby facilitating passive pulmonary blood flow without the assistance of ventricular propulsion. Consequently, long-term follow-up of individuals who have undergone the asymptomatic Fontan procedure is essential.

Objectives: The aims of this investigation were to: 1) examine the impact of flow components and kinetic energy (KE) parameters on hemodynamic disturbances in asymptomatic Fontan patients and control group; 2) Assess left ventricular diastolic dysfunction through the analysis of 4D flow parameters across different Fontan sub-groups; 3) Compare intracardiac flow parameters among Fontan sub-groups based on morphological features of the left ventricle (LV) and right ventricle (RV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!