Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Singlet oxygen (O) is the focus of study in many fields, including phototoxicity, antioxidant activity, pollutant weathering, photodynamic therapy, and water disinfection. The imidazole plus RNO (Imd/RNO) method, originated by Kraljic and El Mohsni, is commonly used to monitor singlet oxygen production. In this method, O is quenched by an acceptor, imidazole (Imd), during the formation of a trans-annular peroxide intermediate that bleaches the sensor, p-nitrosodimethylaniline (RNO). Though the method has been widely used, including to monitor O production in complex environments, such as surfactants and cells, studies reporting the efficiency of the assay in complex solvents have not been reported. In this research, the Imd/RNO method in complex, biorelevant solvents, i.e., sodium dodecyl sulfate, octanol, and phosphate buffer-saturated octanol, was compared with reference solvents, i.e., phosphate buffer, ethanol, and methanol, for monitoring O produced by Rose Bengal photosensitization using time-resolved, broadband UV-Vis absorbance measurements. Rates of sensor bleaching and sensitizer photodegradation were simultaneously monitored in each solvent to investigate correlations between the disappearance rates of sensor and sensitizer. The quantum yields of O production (ϕ) in each solvent were calculated using a relative actinometric method. The dependence of sensor bleaching and sensitizer degradation on acceptor concentration and solvent polarity, and the results of assay controls suggest mechanistic differences underlying the reactions comprising the Imd/RNO method. These results demonstrate the need for caution and controls when using the method in complex samples including those containing cells, tissues, or nanoscale particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-019-01910-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!