Mitochondrial NCKX5 regulates melanosomal biogenesis and pigment production.

J Cell Sci

Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, National Center for Children's Health; Beijing Children's Hospital, Capital Medical University, Beijing 100045, China

Published: July 2019

AI Article Synopsis

  • Oculocutaneous albinism (OCA) is a genetic disorder characterized by reduced pigmentation due to mutations affecting pigment production and melanosome function.
  • Researchers identified the NCKX5 gene as a key player in OCA type 6 (OCA6), but its exact role was unclear until they discovered NCKX5 is located in mitochondria instead of melanosomes.
  • The study revealed that impaired mitochondrial function affects calcium transfer to melanosomes, leading to reduced pigment production, which may also relate to hair graying in older adults and skin changes in vitiligo.

Article Abstract

Oculocutaneous albinism (OCA) is a heterogeneous and autosomal recessive hypopigmentation disorder, which is caused by mutations of genes involved in pigment biosynthesis or melanosome biogenesis. We have previously identified (also known as ) as a causative gene for OCA type 6 (OCA6). However, the pathogenesis of OCA6 is unknown. We found that NCKX5 is localized to mitochondria, not to melanosomes. Pharmacological inhibition of mitochondrial function or NCKX exchanger activity reduced pigment production. Loss of NCKX5 attenuated Ca enrichment in melanosomes, which compromised PMEL fibril formation, melanosome maturation and pigment production. Thus, we have defined a new class of hypopigmentation attributable to dysfunctional mitochondria and an impairment of mitochondrial Ca transfer into melanosomes. Thus, it is possible that mitochondrial function could have a role in the graying of hair in older people and formation of hypopigmented lesions in vitiligo patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679581PMC
http://dx.doi.org/10.1242/jcs.232009DOI Listing

Publication Analysis

Top Keywords

pigment production
12
mitochondrial function
8
mitochondrial
4
mitochondrial nckx5
4
nckx5 regulates
4
regulates melanosomal
4
melanosomal biogenesis
4
pigment
4
biogenesis pigment
4
production oculocutaneous
4

Similar Publications

The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.

View Article and Find Full Text PDF

Advancements in microalgal biomass conversion for rubber composite applications.

Sci Rep

January 2025

Hydrobiology Lab, Water Pollution Research Department, National Research Centre, Dokki, Giza, 12622, Egypt.

Carbon black (CB) as rubber reinforcement has raised environmental concerns regarding this traditional petroleum-based filler, which is less susceptible to biodegradability. Although it has great reinforcing properties, the production technique is no longer sustainable, and its cost increases regularly. For these reasons, it is wise to look for sustainable replacement materials.

View Article and Find Full Text PDF

Background: Virus-induced gene silencing (VIGS) is a rapid and powerful method for gene functional analysis in plants that pose challenges in stable transformation. Numerous VIGS systems based on Agrobacterium infiltration has been widely developed for tender tissues of various plant species, yet none is available for recalcitrant perennial woody plants with firmly lignified capsules, such as tea oil camellia. Therefore, there is an urgent need for an efficient, robust, and cost-effective VIGS system for recalcitrant tissues.

View Article and Find Full Text PDF

Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.

View Article and Find Full Text PDF

Pigment particles used in tattooing may exert long terms effect by releasing diffusible degradation products. In the present work, aqueous suspensions of the organic orange diazo pigment PO13 were aged by exposure to simulated sunlight at 40 °C. The morphology and the surface charge of PO13 particles were barely modified upon aging, but primary particles were released by de-agglomeration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!