A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3124
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oil Gel-Based Phantom for Evaluating Quantitative Accuracy of Speed of Sound Measured in Ultrasound Computed Tomography. | LitMetric

To evaluate the quantitative accuracy of the measured speed of sound in ultrasound computed tomography for breast imaging, it is necessary to use a phantom with inclusions whose speed of sound is known. Accordingly, a phantom with known-speed-of-sound inclusions (e.g., containing water and saltwater solution) under the control of temperature was developed. In addition, an oil gel was used as the phantom material for mimicking wave refraction from fatty breast tissue to dense breast tissue. The oil gel was generated by adding SEBS (styrene-ethylene/butylene-styrene, 10% w/w) to paraffin oil. The oil gel-based phantom has a cylindrical shape and contains rod-shaped inclusions that can be filled with water or saltwater solution (3.5% w/w sodium chloride in water). When temperature increases, the speed of sound in the water increases, while that in the oil gel decreases; in particular, the speed of sound in the oil gel was higher than that in the water at temperatures <20.6°C, while the speed of sound in the oil gel was lower than that in the water at temperatures >20.6°C. It has been reported that the speed of sound in dense breast tissue is higher than that in water, while that in fatty breast tissue is lower than that in water. Ultrasound is refracted owing to the difference between the speed of sound in the breast tissue and that in the background water. By controlling the temperatures of the oil gel and water, the oil gel-based phantom simulates the refraction of an ultrasound wave from fatty breast tissue to dense breast tissue. For 43 d, the variation ranges of the speed of sound and attenuation in the oil gel in the reconstructed images were 0.7 m/s and 0.03 dB/MHz/cm, respectively. The concentration of the saltwater solution in the polyacrylamide gel-based phantom decreased from 1% (w/w) to 0.48% (w/w) after 24 h, while that in the oil-gel-based phantom was constant. In addition, magnetic resonance imaging of the oil gel-based phantom revealed that NiSO solution was stably contained in the phantom for 42 d. It is therefore concluded that the liquid cannot penetrate the oil gel. This oil gel-based phantom with such high temporal stability is suitable for multicenter distribution and may be used for standardization of data acquisition and image reconstruction across centers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2019.05.011DOI Listing

Publication Analysis

Top Keywords

speed sound
32
oil gel
28
breast tissue
28
gel-based phantom
24
oil gel-based
20
oil
13
saltwater solution
12
fatty breast
12
dense breast
12
phantom
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!