A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Shear Performance Assessment of Sand-Coated GFRP Perforated Connectors Embedded in Concrete. | LitMetric

Shear Performance Assessment of Sand-Coated GFRP Perforated Connectors Embedded in Concrete.

Materials (Basel)

Department of Bridge Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

Published: June 2019

In order to evaluate the shear performance of sand-coated glass fiber-reinforced polymer (GFRP) perforated connectors (SCGPC) embedded in concrete, 8 pull-out tests were conducted. Finite element (FE) analysis considering GFRP failure and cohesion between GFRP and concrete of SCGPC were conducted for parametric analysis. Effects of surface treatment, hole's radius, embedment length, and multi holes were examined. The test and theoretical analysis revealed that the strength of SCGPC is considerably larger than GFRP Perforated Connector (GPC). The stiffness of SCGPC is determined by the adhesion between concrete and GFRP. When GFRP plate's thickness is less than the critical thickness, the embedment length plays a major role in the strength of SCGPC. When embedment length is less than the effective bond length, the shear strength of SCGPC is governed by both the adhesion and GPC's shear capacity; otherwise, the strength of SCGPC is governed by the adhesion strength. Furthermore, an empirical equation was suggested to predict the shear strength of SCGPC. The equation involves the failure mechanism of both bond and GPC and deals the strength of SCGPC into two ranges according to the embedment length. Good agreement was achieved between the strength prediction by the suggested equation and the parametric analysis result.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631334PMC
http://dx.doi.org/10.3390/ma12121906DOI Listing

Publication Analysis

Top Keywords

strength scgpc
24
embedment length
16
gfrp perforated
12
scgpc
9
shear performance
8
perforated connectors
8
embedded concrete
8
parametric analysis
8
strength
8
shear strength
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!