A number of studies have investigated the adverse toxic effects of titanium dioxide (TiO) nanoparticles (NPs) or zinc oxide (ZnO) NPs. Information on the potential genotoxic effects of the interactions of TiO NPs and ZnO NPs in vivo is lacking. Therefore, this study was designed to investigate the cytogenotoxicity of TiO NPs or ZnO NPs alone or their mixtures using the bone marrow micronucleus assay, and mechanism of damage through the evaluation of oxidative stress parameters in the liver and kidney tissues of Swiss mice. Intraperitoneal administration of doses between 9.38 and 150.00 mg/kg of TiO NPs or ZnO NPs or TiO NPs + ZnO NPs was performed for 5 and 10 days, respectively. TiO NPs alone induced a significant (P <  0.05) increase in micronucleated (Mn) polychromatic erythrocytes (PCEs) at the applied doses compared with the negative controls, with a significant difference between 5 and 10 days for TiO NPs alone and TiO NPs + ZnO NPs. Concurrently, TiO NPs alone for 5 days and TiO NPs and TiO NPs + ZnO NPs for 10 days significantly (P <  0.05) decreased the percentage PCE: normochromatic erythrocyte (NCE) indicating cytotoxicity; with a significant difference between the two periods. Significant (P <  0.001) changes in the activities of superoxide dismutase (SOD) and catalase (CAT), and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were observed in the liver and kidney of mice exposed to TiO NPs or ZnO NPs alone or their mixtures. These results suggest that TiO NPs alone was genotoxic; TiO NPs and TiO NPs + ZnO NPs were noticeably cytotoxic while ZnO NPs was not cytogenotoxic. The individual NPs or their mixtures induced oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2019.103204DOI Listing

Publication Analysis

Top Keywords

zno nps
16
tio nps
16
nps zno
12
nps
10
oxidative stress
8
stress parameters
8
swiss mice
8
titanium dioxide
8
zinc oxide
8
tio
6

Similar Publications

Crystal violet (Cry) is an essential textile dye belonging to the triphenylmethane group, that is widely used in the textile industry. It is also applied for paper printing and Gram staining. Previously, it was significant as a topical antiseptic due to its antibacterial, antifungal, and anthelmintic properties.

View Article and Find Full Text PDF

Site-Selective and High-Density Gold Nanoparticle Photodeposition on the Edges of ZnO Nanowires.

J Phys Chem Lett

January 2025

Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.

Selective modification of chemically active sites on supports, such as steps, edges, and corners, with metal nanoparticles (NPs) is a challenging topic in the fields of catalysis and photocatalysis. However, the formation of site-selective, high-density metal NPs on a support has not yet been achieved. Radial ZnO mesocrystals composed of hexagonal nanowires (NWs) with {101̅0} sidewalls were synthesized by a simple solution-phase method.

View Article and Find Full Text PDF

Achieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with () leaf extract, this study introduces a facile green synthesis.

View Article and Find Full Text PDF

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!