Coal combustion residuals (CCRs, also known as "coal ash") contain high concentrations of toxic and carcinogenic elements that can pose ecological and human health risks upon their release into the environment. About half of the CCRs that are generated annually in the U.S. are stored in coal ash impoundments and landfills, in most cases adjacent to coal plants and waterways. Leaking of coal ash ponds and CCR spills are major environmental concerns. One factor which may impact the safety of CCRs stored in impoundments and landfills is the storage area's predisposition to flooding. The southeastern U.S., in particular, has a large number of coal ash impoundments located in areas that are vulnerable to flooding. In order to test for the possible presence of CCR solids in lake sediments following Hurricane Florence, we analyzed the magnetic susceptibility, microscopic screening, trace element composition, and strontium isotope ratios of bottom sediments collected in 2015 and in 2018 from Sutton Lake in eastern North Carolina and compared them to a reference lake. The results suggest multiple, apparently previously unmonitored, CCR spills into Sutton Lake from adjacent CCR storage sites. The enrichment of metals in Sutton Lake sediments, particularly those with known ecological impact such as As, Se, Cu, Sb, Ni, Cd, V, and Tl, was similar to or even higher than those in stream sediments impacted by the Tennessee Valley Authority (TVA) in Kingston, Tennessee, and the Dan River, North Carolina coal ash spills, and exceeded ecological screening standards for sediments. High levels of contaminants were also found in leachates extracted from Sutton Lake sediments and co-occurring pore water, reflecting their mobilization to the ambient environment. These findings highlight the risks of large-scale unmonitored spills of coal ash solids from storage facilities following major storm events and contamination of nearby water resources throughout the southeastern U.S.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.05.188 | DOI Listing |
Nanomaterials (Basel)
December 2024
School of Civil Engineering and Architecture, Henan University, Kaifeng 475000, China.
The increasing incidence of structural failures, such as cracks and collapses, in rock masses within mines, tunnels, and other civil engineering environments has attracted considerable attention among scholars in recent years. Grouting serves as a principal solution to these issues. The Renlou Coal Mine in the Anhui Province is used as a case study to evaluate the effectiveness of nanosilica (NS) as an additive in ultrafine cement (UC), introducing a novel grouting material for practical applications.
View Article and Find Full Text PDFArh Hig Rada Toksikol
December 2024
1Institute for Medical Research and Occupational Health, Division of Radiation Protection, Zagreb, Croatia.
Coal mined in the shut-down Raša mine in Istria, Croatia had a high organic sulphur content. What has remained of its local combustion is a coal and ash waste (legacy site) whose trace element and radionuclide composition in soil has enduring consequences for the environment. The aim of this study was to follow up on previous research and investigate the potential impact on surrounding soil and local residents by characterising the site's ash and soil samples collected in two field campaigns.
View Article and Find Full Text PDFACS Omega
December 2024
School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, PR China.
The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
The combined application of near-infrared spectroscopy (NIRS) and X-ray fluorescence spectroscopy (XRF) has achieved remarkable results in coal quality analysis by leveraging NIRS's sensitivity to organic compounds and XRF's reliability for inorganic composition. However, variations in particle size distribution negatively affect the diffuse reflectance of NIRS and the fluorescence signal intensities of XRF, leading to decreased accuracy and repeatability in predictions. To address this issue, this study innovatively proposes a particle size correction method that integrates image processing and deep learning.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India.
The retention and mobility of arsenic (As) in soil depend on various physical and chemical factors. The knowledge of the sorption-desorption chemistry of As in soil is necessary for predicting the fate and behavior of As in soil environments. Therefore, this study assessed different organic (sugarcane bagasse and vermicompost) and inorganic amendments (steel slag and fly ash) for their impact on sorption-desorption of As in texturally different contaminated soils (of sandy clay (SC) and sandy clay loam (SCL) texture) to understand the effect of amendments on As retention and mobility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!