Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction.

J Hazard Mater

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China. Electronic address:

Published: October 2019

Biochar can act as "electron shuttle" in soil redox reactions. It is possible that biochar accepts the electrons from low molecular weight organic acids (LMWOAs) in soil and then transfer them to the acceptors, e.g., Cr(VI). This study evaluated the interaction between seven soil LMWOAs and peanut shell biochar (BC) as well as its effect on the electron shuttling of biochar for Cr(VI) reduction. Both redox reactions and sorption process occurred during the interaction of biochar and LMWOAs, which altered the contents of Cr(VI) reduction-relevant groups (i.e., CO and CO) on the surface of biochar. The redox reactions were more important to the electron transfer between biochar produced at 400℃ (BC400) and LMWOAs due to the repeated cycle of reduction-oxidation of surface functional groups. The reduction rate of Cr(VI) by LMWOAs mediated by BC400 was 1.10-7.09 × 10 h, among which tartaric acid had the best reduction efficiency due to its highest reducing capability. For biochar produced at 700℃ (BC700), the sorption process of LMWOAs was the key factor to the direct electron shuttling process through the conjugated structure of biochar. The reduction rate of Cr(VI) by LMWOAs mediated by BC700 was significantly higher and ranged 7.40-864 × 10 h, with the oxalic acid having the best reduction efficiency due to its highest sorption capacity by BC700. The results obtained from this study can help to establish the linkage between biochar and LMWOAs in soil electron network, which better explains the multifunctional roles of biochar during the redox processes such as Cr(VI) reduction in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.05.098DOI Listing

Publication Analysis

Top Keywords

electron shuttling
12
biochar
12
crvi reduction
12
redox reactions
12
low molecular
8
molecular weight
8
weight organic
8
organic acids
8
shuttling biochar
8
biochar crvi
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!