Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The distribution of boron (B) in leaves is far from uniform, and tolerance to B toxicity should be varied in different portions of an entire leaf. Here, according to the order and degree of leaf chlorosis, a whole leaf blade of trifoliate orange [Poncirus trifoliata (L.) Raf.] rootstock was divided into two segments-leaf tip and leaf center, and transmission electron microscope (TEM) and fourier transform infrared spectroscopy (FTIR) were used to obtain more detailed information on the cell ultrastructure and component architecture of the two leaf segments under B toxicity. Results revealed that B toxicity led to alterations in pectin network crosslinking structure of leaf tip and destruction of cell wall integrity. Moreover, B toxicity altered protein structure and decreased protein content, while increased carbohydrate content in the two leaf segments, especially in leaf tip. Excess B supply reduced the cellulose content in leaf tip but increased in leaf center. TEM micrographs exhibited chloroplast disintegration and plastoglobulus accumulation in cells of two different leaf sections of B-toxicity plants, with less pronounced changes in leaf center. Furthermore, B toxicity only induced accumulation of starch grains in cells of leaf center. Overall results indicated that the B-toxic-induced biochemical changes of the cell ultrastructure and component architecture greatly differed in leaf tip and center. This study facilitates a better understanding of structural changes in different leaf portions of P. trifoliata under B toxicity stress and provides new ideas for further research on other elements in different plant leaf portions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2019.05.148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!