The field of environmental epidemiology has been using "-omics" technologies, including the exposome, metabolome, and methylome, to understand the potential effects and biological pathways of a number of environmental pollutants. However, the majority of studies have focused on a single disease or phenotype, and have not systematically considered patterns of multimorbidity and whether environmental pollutants have pleiotropic effects. These questions could be addressed by examining the relation between environmental exposures and the phenome - the patterns and profiles of human health that individuals experience from birth to death. By conducting Phenome Wide Association Studies (PheWAS), we can generate new hypotheses about new or poorly understood exposures, identify novel associations for established toxicants, and better understand biological pathways affected by environmental pollutants. In this article, we provide a conceptual framework for conducting PheWAS in environmental epidemiology and summarize some of the advantages and challenges to using the PheWAS to study environmental pollutant exposures. Ultimately, by adding the PheWAS to our "-omics" toolbox, we could substantially improve our understanding of the potential health effects of environmental pollutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682449 | PMC |
http://dx.doi.org/10.1016/j.envint.2019.05.071 | DOI Listing |
Sci Rep
December 2024
British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK.
Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).
View Article and Find Full Text PDFSci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
Hebei Provincial Key Laboratory of Orthopaedic Biomechanics, Hebei Orthopaedic Research Institute, No. 139 Ziqiang Road, Shijiazhuang, 050051, China.
To investigate the population distribution characteristics of elderly osteoporosis fracture patients in Hebei Province and analyze the effects of air pollutants on elderly osteoporosis fractures, We retrospectively collected 18,933 cases of elderly osteoporosis fractures from January 1, 2019, to December 31, 2022, from four hospitals in Hebei Province. The average age was 76.44 ± 7.
View Article and Find Full Text PDFSci Rep
December 2024
OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Sand and dust storms (SDS) can cause adverse health effects, with the oxidative potential (OP) and environmentally persistent free radicals (EPFRs) inducing oxidative stress. We mapped the OP and EPFRs concentrations at 1735 sites in China during SDS periods using experimental data for 2021-2023 and a random forest model. We examined 855,869 hospitalizations during SDS events for 2015-2022 in Beijing, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!