Versatile electrostatically assembled polymeric siRNA nanovectors: Can they overcome the limits of siRNA tumor delivery?

Int J Pharm

Université de Tours, EA6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200 Tours, France. Electronic address:

Published: August 2019

The application of small interfering RNA (siRNA) cancer therapeutics is limited by several extra- and intracellular barriers including the presence of ribonucleases that degrade siRNA, the premature clearance, the impermeability of the cell membrane, or the difficulty to escape endo-lysosomal degradation. Therefore, several delivery systems have emerged to overcome these limitations and to successfully deliver siRNA to the tumor site. This review is focused on polymer-based siRNA nanovectors which exploit the negative charge of siRNA, representing a major challenge for siRNA delivery, to their advantage by loading siRNA via electrostatic assembly. These nanovectors are easy to prepare and to adapt for an optimal gene silencing efficiency. The ability of electrostatically assembled polymeric siRNA nanovectors (EPSN) to improve the half-life of siRNA, to favor the specificity of the delivery and the accumulation in tumor and to enhance the cellular uptake and endosomal escape for an efficient siRNA delivery will be discussed. Finally, the influence of the versatility of the structure of these nanovectors on the protein down-regulation will be evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2019.06.023DOI Listing

Publication Analysis

Top Keywords

sirna
12
sirna nanovectors
12
electrostatically assembled
8
assembled polymeric
8
polymeric sirna
8
sirna tumor
8
sirna delivery
8
nanovectors
5
versatile electrostatically
4
nanovectors overcome
4

Similar Publications

Rationale: Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms.

View Article and Find Full Text PDF

ZBP1 senses DNA triggering type I interferon signaling pathway and unfolded protein response activation.

Front Immunol

January 2025

Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation.

View Article and Find Full Text PDF

Gualou Guizhi Granule inhibits microglia-mediated neuroinflammation to protect against neuronal apoptosis and .

Front Immunol

January 2025

Institute of Structural Pharmacology and Traditional Chinese Medicine (TCM) Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Object: Neuroinflammation mediated by microglia has emerged as a critical factor in ischemic stroke and neuronal damage. Gualou Guizhi Granule (GLGZG) has been shown to suppress inflammation in lipopolysaccharide (LPS)-activated microglia, though the underlying mechanisms and its protective effects against neuronal apoptosis remain unclear. This study aims to investigate how GLGZG regulates the Notch signaling pathway in microglia to reduce neuroinflammation and protect neurons from apoptosis.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) contribute to the resistance of intractable prostate cancer, and dopamine receptor (DR)D2 antagonists exhibit anticancer activity against prostate cancer and CSCs. Human prostate cancer PC-3 cells were used to generate CSC-like cells, serving as a surrogate system to identify the specific DR subtype the inhibition of which significantly affects prostate-derived CSCs. Additionally, the present study aimed to determine the downstream signaling molecules of this DR subtype that exert more profound effects compared with other DR subtypes.

View Article and Find Full Text PDF

RNA metabolism is focused on RNA molecules and encompasses all the crucial processes an RNA molecule may or will undergo throughout its life cycle. It is an essential cellular process that allows all cells to function effectively. The transcriptomic landscape of a cell is shaped by the processes such as RNA biosynthesis, maturation (RNA processing, folding, and modification), intra- and inter-cellular transport, transcriptional and post-transcriptional regulation, modification, catabolic decay, and retrograde signaling, all of which are interconnected and are essential for cellular RNA homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!