Background: Molecular mechanisms of interaction between cells and extremely low frequency magnetic fields (ELF-MFs) still represent a matter of scientific debate. In this paper, to identify the possible primary source of oxidative stress induced by ELF-MF in SH-SY5Y human neuroblastoma cells, we estimated the induced electric field and current density at the cell level.
Methods: We followed a computational multiscale approach, estimating the local electric field and current density from the whole sample down to the single cell level. The procedure takes into account morphological modeling of SH-SY5Y cells, arranged in different topologies. Experimental validation has been carried out: neuroblastoma cells have been treated with Diphenyleneiodonium (DPI) -an inhibitor of the plasma membrane enzyme NADPH oxidase (Nox)- administered 24 h before exposure to 50 Hz (1 mT) MF.
Results: Macroscopic and microscopic dosimetric evaluations suggest that increased current densities are induced at the plasma membrane/extra-cellular medium interface; identifying the plasma membrane as the main site of the ELF-neuroblastoma cell interaction. The in vitro results provide an experimental proof that plasma membrane Nox exerts a key role in the redox imbalance elicited by ELF, as DPI treatment reverts the generation of reactive oxygen species induced by ELF exposure.
General Significance: Microscopic current densities induced at the plasma membrane are likely to play an active physical role in eliciting ELF effects related to redox imbalance. Multiscale computational dosimetry, supported by an in vitro approach for validation, is proposed as the innovative and rigorous paradigm to unveil mechanisms underlying the complex ELF-MF interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2019.06.005 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.
Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.
Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!