Genetic and functional data identifying Cd101 as a type 1 diabetes (T1D) susceptibility gene in nonobese diabetic (NOD) mice.

PLoS Genet

JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.

Published: June 2019

Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-β mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6568395PMC
http://dx.doi.org/10.1371/journal.pgen.1008178DOI Listing

Publication Analysis

Top Keywords

myeloid cells
16
nodb6 idd10
16
increased t1d
12
t1d frequency
12
t1d
9
cells
9
cd101
8
type diabetes
8
diabetes t1d
8
diabetic nod
8

Similar Publications

ALKBH3-mediated m1A demethylation promotes the malignant progression of acute myeloid leukemia by regulating ferroptosis through the upregulation of ATF4 expression.

Hematology

December 2025

The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, Yunnan Province, People's Republic of China.

To investigate the role of ALKBH3 in acute myeloid leukemia (AML), we constructed an animal model of xenotransplantation of AML. Our study demonstrated that ALKBH3-mediated m1A demethylation inhibits ferroptosis in KG-1 cells by increasing ATF4 expression, thus promoting the development of AML. These findings suggest that reducing ALKBH3 expression may be a potential strategy to mitigate AML progression.

View Article and Find Full Text PDF

Unlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Inversion of chromosome 16 [inv(16)] is one of the most common chromosomal rearrangements in Acute Myeloid Leukemia (AML) and generates the fusion gene , which initiates leukemogenesis. Patients with inv(16) at diagnosis invariably have the rearrangement at relapse, leading to the assumption that is required after leukemic transformation. However, this has yet to be shown experimentally.

View Article and Find Full Text PDF

This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.

View Article and Find Full Text PDF

Myeloid cells meet CD8 T cell exhaustion in cancer: What, why and how.

Chin J Cancer Res

December 2024

School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China.

Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8 T cell (CD8 Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8 T cell exhaustion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!