Light scattering by tissues limits performance in biological sensing or stimulation. Here we present a photoacoustic technique that increases light transmittance by one order of magnitude and enables light localization in deep tissue. Laser-induced nonlinear acoustic waves are utilized to produce a high refractive index contrast in scattering medium without high-intensity pressure. The size of guiding area is around 60 μm, which is equivalent or smaller than the diameter of multimode fibers. To show potential use in biomedical fields, we performed light guiding and imaging of fluorescence, through swine tissues with thickness more than 1 mm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.003006 | DOI Listing |
Luminescence
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
Herein, highly fluorescent sulfur and nitrogen co-doped carbon dots (N, S-CDs) had been employed as a fluorescent probe to analyze Cu in drinking water. The biogenic creatinine is known to form a stable complex with Cu; hence, it was rationally selected as a bioinspired nitrogen substrate for the first time to enhance N, S-CDs selectivity towards Cu. Moreover, the literature was surveyed to guide the selection of sulfur and carbon sources to optimize N, S-CDs quantum yield (QY), so thiourea and disodium edetate are co-carbonized with biogenic creatinine at 270°C for 40 min and characterized using different techniques.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Due to considerable tumour heterogeneity, stomach adenocarcinoma (STAD) has a poor prognosis and varies in response to treatment, making it one of the main causes of cancer-related mortality globally. Recent data point to a significant role for metabolic reprogramming, namely dysregulated lactic acid metabolism, in the evolution of STAD and treatment resistance. This study used a series of artificial intelligence-related approaches to identify IGFBP7, a Schlafen family member, as a critical factor in determining the response to immunotherapy and lactic acid metabolism in STAD patients.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
Substituting the molecular metal complexes used in the industrial olefin hydroformylation process is of great significance in fundamental research and practical application. One of the major difficulties in replacing the classic molecular metal catalysts with supported metal catalysts is the low chemoselectivity and regioselectivity of the supported metal catalysts because of the lack of a well-defined coordination environment of the metal active sites. In this work, we have systematically studied the influences of key factors (crystallinity, alkali promoters, etc.
View Article and Find Full Text PDFFood Chem
January 2025
China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom. Electronic address:
A microfluidic-surface enhanced Raman spectroscopy (SERS) platform for rapid detection of Escherichia coli in food products is proposed. By implementing a Y-junction serpentine microfluidic channel, we achieved in-situ synthesis of silver nanoparticles (AgNPs), for enhancing SERS signal intensity. The synthesis of AgNPs was guided by specific aptamers bound to the bacterial cell, which facilitated formation of nanoparticles.
View Article and Find Full Text PDFSemin Cell Dev Biol
January 2025
Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia. Electronic address:
The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!