Liquid phase exfoliation is a commonly used method to produce 2D nanosheets from a range of layered crystals. However, such nanosheets display broad size and thickness distributions and correlations between area and thickness, issues that limit nanosheet application potential. To understand the factors controlling the exfoliation process, we have liquid-exfoliated 11 different layered materials, size-selecting each into fractions before using AFM to measure the nanosheet length, width, and thickness distributions for each fraction. The resultant data show a clear power-law scaling of nanosheet area with thickness for each material. We have developed a simple nonequilibrium thermodynamics-based model predicting that the power-law prefactor is proportional to both the ratios of in-plane-tearing/out-of-plane-peeling energies and in-plane/out-of-plane moduli. By comparing the experimental data with the modulus ratio calculated from first-principles, we find close agreement between experiment and theory. This supports our hypothesis that energy equipartition holds between nanosheet tearing and peeling during sonication-assisted exfoliation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b02234DOI Listing

Publication Analysis

Top Keywords

thickness distributions
8
area thickness
8
equipartition energy
4
energy defines
4
defines size-thickness
4
size-thickness relationship
4
relationship liquid-exfoliated
4
liquid-exfoliated nanosheets
4
nanosheets liquid
4
liquid phase
4

Similar Publications

Background: Predicting burn-related mortality is vital for family counseling, triage, and resource allocation. Several of the burn-specific mortality prediction scores have been developed, including the Abbreviated Burn Severity Index (ABSI) in 1982. However, these scores are not tested for accuracy to support contemporary estimates of the global burden of burn injury.

View Article and Find Full Text PDF

Multiple active mining faces and extensive excavations under thick-hard strata in deep coal mines result in frequent strong mine earthquakes, often accompanied by significant surface subsidence deformation. Understanding the specific law of surface movement and the spatiotemporal distribution response to intense mine earthquakes is crucial for effectively preventing and mitigating dynamic disasters in deep mines. Utilizing the key layer theory, the intricate strata of the Yingpanhao Coal Mine are systematically delineated, drawing upon the engineering context of working faces 2201 and 2202 within the Ordos Chemical Co.

View Article and Find Full Text PDF

Background: Operative delivery is a technique used during vaginal or cesarean birth to facilitate the patient's labor course through the assistance of a vacuum extractor. This method is increasingly used compared with forceps. This study aimed to investigate the forced effects of vacuum extractors comprising vacuum cups with different thicknesses on the fetal head and the vacuum extractor during vacuum-assisted delivery and to determine the optimal thickness for reducing the failure rate and minimizing neonatal and maternal morbidity.

View Article and Find Full Text PDF

Background: Given the increasing usage of plasma biomarkers for Alzheimer’s disease (AD) studies, it is necessary to better understand relationships between plasma biomarker and PET and MR imaging outcomes, particularly within the AT(N) framework.

Method: We evaluated plasma samples from 233 subjects (age 74.05.

View Article and Find Full Text PDF

Subject-specific finite element models of knee joint contact mechanics are used in assessment of interventions and disease states. Cartilage thickness distribution is one factor influencing the distribution of pressure. Precision of cartilage geometry capture varies between imaging protocols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!