A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural insights into Entamoeba histolytica arginase and structure-based identification of novel non-amino acid based inhibitors as potential antiamoebic molecules. | LitMetric

AI Article Synopsis

  • Arginase is a potential therapeutic target for treating protozoan infections like amebiasis, caused by Entamoeba histolytica, which leads to significant human mortality.
  • The study presents the crystal structures of E. histolytica arginase bound to known inhibitors and its product, showing similarities in inhibitor binding between EhArg and human arginase despite low sequence identity.
  • Four new non-amino acid inhibitors were identified and tested, showing promising inhibition rates that could lead to the development of effective treatments for amebiasis.

Article Abstract

Arginase, the binuclear metalloenzyme, is a potential target for therapeutic intervention in protozoan infections. Entamoeba histolytica infection causes amebiasis which is the second most common cause of protozoan-related human deaths after malaria. Here, we report the crystal structure of E. histolytica arginase (EhArg) in complex with two known inhibitors N -hydroxy-l-arginine (l-NOHA) and l-norvaline, and its product l-ornithine at 1.7, 2.0, and 2.4 Å, respectively. Structural and comparative analysis of EhArg-inhibitor complexes with human arginase revealed that despite only 33% sequence identity, the structural determinants of inhibitor recognition and binding are highly conserved in arginases with variation in oligomerization motifs. Knowledge regarding the spatial organization of residues making molecular contacts with inhibitory compounds enabled in the identification of four novel non-amino acid inhibitors, namely irinotecan, argatroban, cortisone acetate, and sorafenib. In vitro testing of the in silico-identified inhibitors using purified enzyme proved that irinotecan, argatroban, cortisone acetate, and sorafenib inhibit EhArg with IC value (mm) of 1.99, 2.40, 0.91, and 2.75, respectively, as compared to the known inhibitors l-NOHA and l-norvaline with IC value (mm) of 1.57 and 17.9, respectively. The identification of structure-based non-amino acid inhibitory molecules against arginase will be constructive in design and discovery of novel chemical modulators for treating amebiasis by directed therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14960DOI Listing

Publication Analysis

Top Keywords

non-amino acid
12
identification novel
8
novel non-amino
8
molecules arginase
8
l-noha l-norvaline
8
irinotecan argatroban
8
argatroban cortisone
8
cortisone acetate
8
acetate sorafenib
8
arginase
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!