Detachment of cells from the extracellular matrix into the peritoneal cavity initiates a cascade of metabolic alterations, leading usually to cell death by apoptosis, so-called . Glycolytic enzymes enable the switch from oxidative phosphorylation to aerobic glycolysis and allow resistance to anoikis of shed tumour cells. These enzymes also have moonlighting activities as protein kinases and transcription factors. Phosphoglycerate kinase (PGK) and pyruvate kinase are the only glycolytic enzymes generating ATP in the hexokinase pathway. Hypoxia, EGFR activation, expression of K-Ras G12V and B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 (PGK1). Mitochondrial PGK1 acts as a protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1), reducing mitochondrial pyruvate utilization, suppressing reactive oxygen species production, increasing lactate production and promoting tumourigenesis. PGK1 also plays a role as a transcription factor once transported into the nucleus. Resistance to anoikis is also facilitated by metabolic support provided by cancer-associated fibroblasts (CAFs). Our series of experiments in-vitro and in the animal model showed that PGK1 knock-out or inhibition is effective in controlling development and growth of peritoneal metastasis (PM) of gastric origin, establishing a causal role of PGK1 in this development. PGK1 also increases CXCR4 and CXCL12 expression, which is associated with a metastatic phenotype and plays a role in the metastatic homing of malignant cells. Thus, PGK1, its modulators and target genes may be exploited as therapeutic targets for preventing development of PM and for enhancing cytotoxic effects of conventional systemic chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545877PMC
http://dx.doi.org/10.1515/pp-2019-0003DOI Listing

Publication Analysis

Top Keywords

resistance anoikis
12
glycolytic enzymes
12
phosphoglycerate kinase
8
plays role
8
pgk1
7
kinase
5
anoikis transcoelomic
4
transcoelomic shedding
4
role
4
shedding role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!