Partial Characterization of Novel Bacteriocin SF1 Produced by and Their Lethal Activity on Members of Gut Microbiota.

Int J Microbiol

Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.

Published: May 2019

A strain of producing bacteriocin was isolated from a patient with diarrhea. The main objective of this study was to isolate and partially characterize the bacteriocin. The producing microorganism was identified using biochemical, serological, and molecular methods. The lethal activity of the strain was studied using the drop method. This bacterial strain showed activity against different strains of and . Using immunological techniques, it was determined that belongs to serotype 2a, and by PCR, the presence of the ipaH plasmid was determined. By chromatographic techniques, it was determined that the bacteriocin is a peptide of high purity with a molecular weight of 66294.094 Da. The amino acid composition and sequence were determined by the Edman reaction, and a sequence of 619 amino acid residues was obtained. Only in five positions of this sequence, the amino acid glutamine changed to glutamic acid with respect to colicin U produced by . From an ecological point of view, it could be assumed that SF1 bacteriocin contributes to eliminate some members of the normal microbiota of the human intestine, facilitating colonization and then producing the invasion process that characterizes the pathogenicity of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526549PMC
http://dx.doi.org/10.1155/2019/6747190DOI Listing

Publication Analysis

Top Keywords

amino acid
12
lethal activity
8
techniques determined
8
bacteriocin
5
partial characterization
4
characterization novel
4
novel bacteriocin
4
bacteriocin sf1
4
sf1 produced
4
produced lethal
4

Similar Publications

Corrigendum to Noninflammatory 97-amino acid High Mobility Group Box 1 derived polypeptide disrupts and prevents diverse biofilms. EBioMedicine 107 (2024).

EBioMedicine

January 2025

Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital; Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University; Columbus, OH 43210, USA. Electronic address:

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!