Background: Methyl methacrylate monomer of denture base resins was modified with several monomers to achieve better physico-mechanical properties without compromising the biocompatibility. However, there are no consensuses on the best strategy to achieve best modified monomer.
Purpose: To identify and evaluate the differences in the properties between conventional and modified monomers and to verify the influence of several variables on the properties of denture base acrylic resin.
Materials And Methods: This study was executed by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. In-vitro studies that investigated the properties of conventional and modified monomers were selected. Searches were carried out in the Ebscohost, PubMed, Semantic scholar and J-stage databases. The search commenced from the year 1995 and the last search was done till November 2018. A comparison was performed between modified and unmodified monomers. The analyses were carried out using fixed-effect models.
Results: The meta-analysis results showed high heterogeneity in all aspects, and higher flexural strength for monomers modified with 20% methacrylic acid.
Conclusion: Although the articles included in this meta-analysis showed high heterogeneity and high risk of bias, the in-vitro literature seems to suggest that use of modified monomers could improve the properties of denture base resins. Other variants of monomer modifications and their tested parameters were discussed in this systematic review as well. Dimensional accuracy is an unexplored variable to be evaluated extensively in the future researches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555369 | PMC |
http://dx.doi.org/10.4103/JPBS.JPBS_34_19 | DOI Listing |
J Prosthet Dent
January 2025
Professor, Department of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil. Electronic address:
Statement Of Problem: Staining at the gingival margin could impact denture longevity, but the behavior of gingival colored composite resins (GCCs) in this area remains unclear.
Purpose: This in vitro study evaluated surface staining, microleakage, and push-out bond strength at the gingival margin of artificial teeth, comparing two consistencies of GCCs with two resin base materials.
Material And Methods: Specimens included artificial teeth (Ivostar; Ivoclar AG) and two acrylic resin base materials: conventional (Ondacryl; Clássico) and high-impact (Diamond D; Keystone Industries) (n=300).
J Prosthodont Res
January 2025
Department of Comprehensive Dentistry, UT Health San Antonio, San Antonio, USA.
Purpose: To determine the effects of K18 quaternary ammonium methacryloxy silane (QAS) on tissue conditioner materials and their antimicrobial properties.
Methods: 30% K18 QAS in methyl methacrylate (MMA; K18-MMA; 0%, 15%, and 20% w/w) was incorporated into a commercial tissue conditioner (Coe comfort). The degree of curing (Shore A hardness), hydrophilicity (contact angle), flow, liquid sorption, mass loss, and antimicrobial properties of Streptococcus mutans, Streptococcus sanguinis, and Candida albicans were determined.
J Prosthodont Res
January 2025
Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen.
Purpose: This systematic review evaluated the effect of different printing orientations on the physical-mechanical properties and accuracy of resin denture bases and related specimens.
Study Selection: Utilizing PRISMA 2020 guidelines, a comprehensive search of PubMed, Web of Science, Cochrane, and Scopus databases was conducted until June 2024. Included studies examined the accuracy, volumetric changes, and mechanical or physical properties of 3D-printed denture bases in various orientations.
J Dent
January 2025
Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland. Electronic address:
Objective: This study aimed to investigate the resin compounds from CAD-CAM 3D-printed denture resins, focusing on the identification and classification of free monomers and other components. The primary objective was to determine the chemical profile of these 3D-prinding resin materials.
Methods: Four 3D-printed denture resins, two base materials (1: DentaBASE, Asiga Ltd.
Cureus
December 2024
Department of Oral and Maxillofacial Surgery, National Hospital Organization, Kyoto Medical Center, Kyoto, JPN.
This study aimed to reproduce a complete wooden plate denture, which was the first in the world to retain suction under negative pressure, using the same materials and methods from 400 years ago (i.e., the Edo period) to verify its masticatory performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!